| 研究生: |
王登勝 Wang, Deng-Sheng |
|---|---|
| 論文名稱: |
可重置編碼化分波多工技術在提升光纖到家網路安全性之探討 Reconfigurable Coded WDM on Enhancing Confidentiality in Fiber-to-the-Home Network |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 陣列波導光柵 、最大長度序碼 、可重置編碼化分波多工 、頻域振幅編碼 、乙太被動式光纖網路 |
| 外文關鍵詞: | spectral amplitude coding, reconfigurable coded WDM, EPON, maximal-length sequence, Arrayed-Waveguide Grating |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在第一英哩光接取網路(first mile optical access networks)上的個人通訊隱私越來越到重視,因此對於提升網路上的安全機制是迫切需要的。為了更進一步地提升網路資料的機密性,本論文將ㄧ種新式的可重置編碼化分波多工技術架構在乙太被動式光纖網路上(reconfigurable coded wavelength-division-multiplexing over Ethernet passive optical network, reconfigurable coded WDM-EPON),預防竊聽者偷取光纖到家網路裡每個用戶的重要資訊。此外,可重置編碼化分波多工技術不僅能提供目前接取網路所無法提供的資料安全,另外還擁有高速、突發式非同步傳輸(burst asynchronous transmission)、靈活的網路設計以及可避免網路上的資料碰撞(data collision),這些重大優勢。因此可重置編碼化分波多工技術將可能被視為解決乙太被動式光纖網路的最佳方案之ㄧ。
在本論文中,我們僅僅利用一組簡單的可重置編解碼器架構,便能夠提供與傳統較複雜的編碼化分波多工技術具同樣良好的資料機密性。因此,我們並不採用複雜的跳頻(wavelength-hopping)、展時(time-spreading)甚至頻域相位編碼(spectral phase),這些擁有巨大的碼空間但較難以實現編碼技術。而是利用頻域振幅編碼(spectral amplitude coding, SAC)的方式將最大長度序碼(maximal-length sequence codes, M-sequence)來當做每個使用者的光位址序碼 (optical address codewords)。再者,我們可將光切換器、控制暫存器與陣列波導光柵(Arrayed-Waveguide Grating, AWG)所具有的波長循環特性結合,整合成一組可重置化的編解碼器(reconfigurable encoder/decoder, codec)。因此,我們所提出的架構不但能提升網路的安全性還能使得整個系統變得小巧且簡單,這是因為所有的使用者可以共用一組集中在同一個區域的編解碼器。
再者,目前大部分有關於編碼化分波多工技術文獻裡,以往只能憑藉著直覺與不嚴謹的概念來評估本身的安全性,只有極少數能確實量化出編碼化分波多工技術所能提供的機密性究竟有多高。因此,本論中亦提出ㄧ套對於可重置編碼化分波多工技術在預防竊聽上的定量與定性分析方法。在考慮網路遭受竊聽之觀點下,我們將計算出機密性程度(degree of confidentiality, DOC)、暴力法搜尋時間(brute-force searching time)與預期警戒時間(anticipative warning time)等,一系列的評估方式證實架構可重置編碼化分波多工於乙太被動式光纖網路,在相較於傳統的光纖到家網路之下,確實能夠大幅提升網路資料的機密性。
With regard to communication’s privacy in the first/last mile optical access networks, the security mechanism is in need of enhancement urgently. In this thesis, the reconfigurable coded wavelength-division-multiplexing over Ethernet passive optical network (reconfigurable coded WDM-EPON) is presented to enhance the confidentiality. Besides, the reconfigurable coded WDM scheme also has several other advantages such as high speed, more flexibility in network design, burst asynchronous transmission and data collision prevention. Thus, the proposed scheme will be one of promising candidates for EPON system.
In this thesis, we develop merely one simple reconfigurable encoder/decoder (codec) architecture instead of other complicated coded WDM schemes to generate excellent data confidentiality. Rather than employing wavelength-hopping, time-spreading or spectral phase taxing coding approaches, which all involve huge code space, this thesis applies spectral amplitude coding (SAC) with maximal-length sequence (M-sequence) codes as optical address codewords. In addition, we integrate optical switches, control register and inherent cyclic periodic properties of Arrayed-Waveguide Grating (AWG) routers into AWG-based reconfigurable codec. Therefore, not only can the proposed scheme prevent current access network form eavesdropping but it can also maintains the benefits of a more compact size and a simpler implementation because all users can share a single codec pair and the AWG-based reconfigurable codec are centralized at a common location.
Furthermore, most of coded WDM in literature never evaluated the performance of confidentiality and they are only dependent on imprecise intuition and notion. In our proposed scheme, both qualitative and quantitative analyses of protecting against eavesdropping also investigated. Under eavesdropping with a series of evaluation strategies such as degree of confidentiality (DOC), brute-force searching time and anticipative warning time, the proposed reconfigurable coded WDM-EPON scheme is demonstrated that the confidentiality will be significantly increased by implementing reconfiguration of codec.
[1] G. Kramer, K. Tanaka “Advances in optical access networks,” Optical Fiber Communication Conference, 2005. Technical Digest OFC/NFOEC, vol. 4, pp. 3, Mar. 2005.
[2]. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
[3]. S. Dixit, IP over WDM: Building the Next-Generation Optical Internet, John Wiley and Sons, Inc., New Jersey (2003).
[4]. P. Ossieur, X. Z. Qiu, J.Bauwelinck, D. Verhulst, Y. Martens, J. Vandewege and B. Stubbe, “An overview of passive optical networks,” Signals, Circuits and Systems, 2003. International Symposium on, vol. 1, pp. 113-116, Jul. 2003.
[5]. IEEE 802.3ah Ethernet in the First Mile Task Force. Available from http://www. ieee802.org/3/efm/.
[6]. K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—Solution Path to Gigabit-Symmetric FTTH,” J. Lightwave Technol., vol. 24, issue. 4, pp. 1654-1662, Apr. 2006.
[7]. J. S. Wu, F. R. Gu and H. W. Tsao, “Jitter Performance Analysis of SOCDMA-Based EPON Using Perfect Difference Codes,” J. Lightwave Technol., vol. 22, no. 5, pp. 1309-1319, May 2004.
[8]. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol. 22, no. 11, pp. 2582-2591, Nov. 2004.
[9]. F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee and L. G. Kazovsky, “SUCCESS-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Optical communications, vol. 43, issue.11, pp. s40-s47, Nov. 2005.
[10]. A. Sierra, and S. V. Kartalopoulos, “Evaluation of Two Prevalent EPON Networks Using Simulation Methods,” Telecommunications, 2006. AICT-ICIW’06, pp. 48-48, Feb. 2006.
[11]. A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag., vol. 40, issue.9, pp. 83-87, Sep. 2002.
[12]. B. G. Ahn and Y. Park, “A symmetric-structure CDMA-PON system and its implementation,” IEEE Photon. Technol. Lett., vol. 14, issue. 9, pp. 1381-1383, Sep. 2002.
[13]. J.F. Huang, Y.T. Chang and D.S Wang, “Coded WDM- PON Techniques with Complementary Walsh Coding over Fiber-to-the-Home Networks,” Journal of Communication and Computer, vol. 2, no. 11, pp. 52-58, Nov. 2005.
[14]. A. Stok and H. Sargent, “Lighting the local area: optical code-division multiple access and quality of service provisioning,” IEEE Network, vol. 14, Issue. 6, pp. 42-46, Nov.-Dec. 2000.
[15]. N. Nadarajah and E. Wong, “Implementation of multiple secure virtual private networks over passive optical networks using electronic CDMA,” IEEE Photon. Technol. Lett., vol. 18, Issue 3, pp.484-486, Feb. 2006.
[16]. K. O. Kim, K. S. Han and T. W. Yoo, “The Implementation of the Link Security Module in an EPON Access Network,” 2005 Asia-Pacific Conference on Communications, pp. 1-5, Oct. 2005.
[17]. S. S. Roh and S. H. kim, “Security model and authentication protocol in EPON-based optical access network,” Transparent Optical Networks, 2003, vol. 1, pp. 99-102, July. 2003.
[18]. W. Shawbaki, “Multimedia Security in Passive Optical Networks via Wavelength Hopping and codes cycling technique,” Telecommunications AICT-ICIW '06, pp. 51-51, Feb. 2006.
[19]. J. A. Salehi, “Code division multiple-access technique in optical fiber networks—Paret1: Fundamental priciples,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug 1989.
[20]. S. V. Marhic, Z. I. Kostic and E. L. Titlebaum, “A new family of optical code sequences for use in spread spectrum fiber-optical local area networks,” IEEE Trans. Commun., vol. 41, no. 8, pp.1217-1221, Aug. 1993.
[21]. T.H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE J. Lightwave Technol, vol. 23, pp. 655-670, Feb. 2005.
[22]. T.H. Shake, “Confidentiality performance of Spectral-Phase-Encoded optical CDMA,” IEEE J. Lightwave Technol, vol. 23, no. 4, pp. 1652-1663, April. 2005.
[23]. L. Tancevski, I. Andonovic and J. Budin, “Secure optical network architectures utilizing wavelength hopping/time spreading codes,” IEEE Photon. Technol. Letter, vol. 7, issue. 5, pp. 573-575, May 1995.
[24]. C.C. Sue, J.F. Huang, Y.T. Chang , D.S. Wang and C.Y. Lee, “A Robust Design of Reconfigurable Coder/Decoder Against Un-authorized Users in Optical CDMA Network,” IEEE Tencon’05 international conference, Australia, Nov, 2005.
[25]. C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating router,” IEEE Photon. Technol. Lett., vol. 16, pp. 641-643, Feb. 2005.
[26]. N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technology, vol. 2, pp. 149-168, Apr. 1996.
[27]. G.R. Cooper and R.W. Nettleton, "A spread spectrum technique for high-capacity mobile communications", IEEE Trans. Vehicular Tech., vol. VT-27, no.4, pp 264-275, Nov. 1978.
[28]. E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[29]. D. Zaccarin, and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479-482, Apr. 1993.
[30]. M. Kavehrad, and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
[31]. J.F. Huang and D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, pp. 1252-1254, Sept. 2000.
[32]. W. Zou, H.G. Shiraz, “Codes for spectral-amplitude-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 20, issue 8, pp. 1284–1291, Aug. 2002.
[33]. E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance Enhancement of Spectral-Amplitude-Coding Optical CDMA Using Pluse-Position Modulation,” IEEE Trans. Commun., vol. 46, no. 9, pp.1176-1185, Sept. 1998.
[34]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, March 1995.
[35].Y.T. Chang, J.F. Huang, D.S. Wang, and C.C. Hsu, “Confidentiality Enhancement over Reconfigurable Coded-WDM-Based Passive Optical Network,” Opt 2005, B-SA-III 9-3, National Cheng Kung University, Tainan, Taiwan, Dec. 09-10, 2005.
[36]. J.F. Huang, Y.T. Chang, C.C. Sue and D.S. Wang, “Reconfigurable coded WDM with Arrayed-Waveguide-Gratings to Enhance Confidentiality on Fiber-to-the-Home Networks,” 2006 Asia-Pacific Conference on Communications, Korea, May, 2006.