| 研究生: |
袁成華 Yuan, Chen-Hua |
|---|---|
| 論文名稱: |
鈦鉬合金熱處裡後疲勞性質之研究 Fatigue Properities of Titanium-Molybdenum after Heat Treatment |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鈦合金 、疲勞 、表面粗糙度 |
| 外文關鍵詞: | surface roughness, fatigue, titanium alloy |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦合金具有低密度、高耐蝕性及優良的生物相容(biocompatibility) ,被廣泛使用於許多生醫用途。鈦合金強化的方式有許多形式,但最常使用的是加工硬化及熱處理。
疲勞(fatigue)是結構受動態或規律性變動應力時的一種破損形式。週期性應力/應變皆會施加於材料上,應力集中於某些小區域-表面刻痕或微結構不均質處,造成塑性變形,隨著每一次的週期性荷重,逐漸累積塑性變形,微裂縫成核為疲勞裂縫起始。
從實驗室自行研發Ti-A及Ti-B兩種鈦合金各自於滾軋加工及固溶處裡後機械性質較佳的條件,作為本次實驗的材料。此外根據實驗室之前對於根據實驗室之前對於鑄造鈦合金疲勞性質的研究發現:疲勞破壞多起始於鑄造過程所產生表面/次表面孔洞。因此利用實驗製程中不同的表面處裡來控制表面刻痕的粗糙度,避免孔洞對於疲勞性質的影響。
從實驗結果發現,表面刻痕粗糙度越小,表面刻痕粗糙度越小,疲勞性質越佳,抗疲勞強度越高,疲勞壽命越長。元件表面是否無缺陷對於元件使用壽命有十分大的影響。
The titanium alloy has low density, good corrosion resistance and good biocompatibility so used in biomaterial way very much.
Fatigue means material failure by a regular loading, and most material failure way is fatigue when used. So we research fatigue properties of titanium alloy. We used working harding and heat treatment to enhance titanium alloy, and use surface treatment to control roughness of samples.
We find that the lower roughness the higher fatigue life.
Akahori T, Niinomi M. Fracture characteristics of fatigued Ti-6Al-4V ELI as an implant material, Mater Sci Eng A, 243, 237-43, 1998.
Chia-Wei Lin, Investigation of fatigue behavior of cast titanium-molybdenum alloys.
Clemson Advisory Board for Biomaterials. “Definition of the word biomaterial”, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
Collings EW. The physical metallurgy of titanium alloys, ASM Series in Metal Processing. Gegel HL, editor. Cleveland, Metals Park, OH: American Society for Metals, 1984.
Dan-Jae Lin, Ju CP and Chern Lin JH. Structure and Properties of Ti-Mo-Fe and Ti-Mo-Cr Alloys,2002
Davidson JA. Titanium molybdenum hafnium alloys for medical implants and device. US Patent No. 5954724, 1999.
Hampel H, Piehler HR. Evaluation of the corrosion fatigue behavior of porous coated Ti-6Al-4V. edited by Brown SA and Lemons JE, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, 136-148, 1996.
Laing PG, Fergosun AB, Hodge ES. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res, 1, 135-49, 1967.
Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials, 19, 1621-39, 1998.
Long M, Crooks M, Rack HJ. High-cycle fatigue performance of solution-treated metastable-β titanium alloys. Acta Mater, 47, 661-9, 1999.
Mishra AK, Davidson JA, Poggie RA, Kovacs P, FitzGerald TJ. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – a new titanium alloy for surgical implants. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, p. 96-113, 1996.
Mattew J.D. Jr(editor). Titanium technical guide, ASM International, Metal Park, Oh44073. 1998, P14
Niinomi M, Saga A, Fukunaga KI, Long crack growth behavior of implant material Ti-5Al-2.5Fe in air and simulated body environment related to microstructure. International Journal of Fatigue, 22, 887-97, 2000.
Okazaki Y, Asao S, Rao S, Tateishi T. Effect of concentration of Zr, Sn, Nb, Ta, Pd, Mo, Co, Cr, Si, Ni, Fe on the relative growth ratios of biocells. J Japan Inst Metal, 60, 902-6, 1996.
Perl DP, Brody AR. Alzeihmer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science, 208, 297-9, 1980.
Rao S, Ushida T, Tateishi T, Okazaki Y, Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomed Mater Eng, 6, 79-86, 1996.
Reed-Hill, Robert E, Physical Metallurgy Principles, 1996(C.R. Nonferrous Alloys, American Society for Metals, Metals Park, OH, 1984)
Steinemann SG. Corrosion of titanium and titanium alloys for surgical implants. Ti’84 Science and Technology. Ljering G, Zwicker U, Bunk W. editors, 1373, 1984.
Walker PR, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 28, 3911-5, 1989.
Wang K, Gustavson LJ, Dumbleton JH. Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, p. 76-87, 1996.
Wen-Fu Ho, Ju CP and Chern Lin JH. Structure and Properties of Cast Ti-Mo Alloys
Yumoto S, Ohashi H, Nagai H, Kakimi S, Ogawa Y, Iwata Y, Ishii K. Aluminum neurotoxicity in the rat brain. Int J of PIXE, World Scientific Publishing Company, 2, 493-504, 1992.
Zardiakas LD, Michell DW, Disegi JA. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, p. 60-75, 1996.
莊政和,鈦鉬合金熱處理後機械性質之研究,民國93年。