| 研究生: |
謝詠筌 Hsieh, Yung-Chuan |
|---|---|
| 論文名稱: |
再生室孔隙率梯度對維勒米爾式冷凍機之效能影響 Effect of Porosity Gradient of the Regenerator on the Performance of a Vuilleumier Refrigerator |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 維勒米爾式冷凍機 、孔隙率梯度 、實驗量測 、數值模擬 |
| 外文關鍵詞: | Vuilleumier refrigerator, porosity gradient, experimental measurement, numerical model |
| 相關次數: | 點閱:134 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與一般以電能作為主要輸入能源的冷凍機械不同,維勒米爾式冷凍機熱驅動的特性,使其於近期開始得到研究者的關注,許多理論模型與參數分析的相關文獻也在近幾年陸續發表。回熱式機械中的再生室由於其兩端之間所存在的溫差,溫度梯度的產生是為必然,往復流動於其中的工作流體因溫度梯度而形成不同的物理狀態及熱力性質。本研究為因應此特性,欲在再生通道的設計上產生孔隙率梯度,使系統得以更高的效率運用外部提供之能量,藉此擁有更好的表現。以現有研究室所開發之維勒米爾式冷凍機為原型機基礎,除了為增進性能與配合實驗而進行設計改動外,針對改變內部再生室之孔隙率分布,配置具孔隙率梯度之再生室,建立實驗並探討比較其性能。建構一熱力分析之理論模型預測相同條件下之實驗結果,以更改配置後之實驗數據與理論模型之參數分析等討論不同工作條件下適宜之孔隙率分布。
Among all types of refrigerators, Vuilleumier refrigerator is distinguished for its ability to covert external heat source into cooling power. As a member of regenerative type machines, Vuilleumier refrigerator has two regenerators that effect the performance of refrigerator at its respective sub-systems. Working fluid flow through regenerators would have variant physical and thermal properties due to temperature differences that inevitably occurred along regenerators. In the present study, porosity gradient is obtained theoretically and experimentally to adapt properties changes along regenerators. Comparing results of refrigerator with uniform porosity and porosity gradient setups, improvements of refrigerator performance occurred in porosity gradient setups under various working conditions. Validated with experiment results, theoretical model shows potential to predict desirable value and range of porosity gradient setups under different working conditions.
[1] Y. Wang, X. Wang, W. Dai, and E. Luo, "A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K," Cryogenics, vol. 90, pp. 1-6, 2018.
[2] W.-Y. Lin, X.-H. Wu, J.-L. Yang, and L.-W. Yang, "Experimental study and numerical analysis of thermocompressors with annular regenerators," International Journal of Refrigeration, vol. 36, no. 4, pp. 1376-1387, 2013.
[3] 吳小華,楊俊玲,林文野,楊魯偉,周遠, "直线电机驱动热压缩机数值模拟及实验研究," 工程熱物理學報, vol. 32, 5,
pp. 741-744, 2011.
[4] 馮建華, "維勒米爾式冷凍機之理論分析與性能測試," 國立成功大學航空太空工程學系碩士學位論文, 台南, 2020.
[5] C.-H. Cheng, J.-H. Feng, and J.-S. Huang, "Development of a vuilleumier refrigerator with crank drive mechanism based on experimental and numerical study," International Journal of Refrigeration, vol. 129, pp. 204-214, 2021.
[6] P. Shi, L.-S. Wang, P. Schwartz, and P. Hofbauer, "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy. vol. 277, 11574, 2020.
[7] J. Wang, C. Pan, K. Luo, L. Chen, J. Wang, and Y. Zhou, "Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid," Energy Conversion and Management, vol. 177, pp. 280-291, 2018.
[8] T. Guo et al., "Analytical model for Vuilleumier cycle," International Journal of Refrigeration, vol. 113, pp. 126-135, 2020.
[9] W. Dai, X. Wang, Y. Zhao, E. Luo, and Y. Zhou, "Characteristics of a VM Type Thermal Compressor for Driving a Pulse Tube Cooler," presented at the International Cryocooler Conference, Boulder, CO, 2014.
[10] H. Chen, P. Hofbauer, and J. P. Longtin, "Multi-objective optimization of a free-piston Vuilleumier heat pump using a genetic algorithm," Applied Thermal Engineering, vol. 167, 114767, 2020.
[11] H. Chen, C. Lin, and J. P. Longtin, "Performance analysis of a free-piston Vuilleumier heat pump with dwell-based motion," Applied Thermal Engineering, vol. 140, pp. 553-563, 2018.
[12] G. Dogkas, "Thermodynamic Analysis of Vuilleumier Heat Pumps," PhD Thesis, School of Mechanical Engineering, National Technical University of Athens, Athens, September 2019.
[13] G. Dogkas, P. Bitsikas, D. Tertipis, and E. Rogdakis, "Vuilleumier machine speed-effect investigation with CFD and analytical model," International Journal of Heat and Mass Transfer, vol. 143, 118513, 2019.
[14] A. Kołodziej, J. Łojewska, M. Jaroszyński, A. Gancarczyk, and P. Jodłowski, "Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling," International Journal of Heat and Fluid Flow, vol. 33, no. 1, pp. 101-108, 2012.
[15] H. Sun, S. Bu, and Y. Luan, "A high-precision method for calculating the pressure drop across wire mesh filters," Chemical Engineering Science, vol. 127, pp. 143-150, 2015.
[16] F. Azizi, "On the pressure drop of fluids through woven screen meshes," Chemical Engineering Science, vol. 207, pp. 464-478, 2019.
[17] K. V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, and V. A. Arolkar, "Design and development of porous regenerator for Stirling cryocooler using additive manufacturing," Thermal Science and Engineering Progress, vol. 11, pp. 195-203, 2019.
[18] A. S. Nielsen, B. T. York, and B. D. MacDonald, "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, vol. 253, 113557, 2019.
[19] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev, and M. Sadana, "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, vol. 15, 100442, 2020.
[20] C. H. Cheng, H. S. Yang, Y. H. Tan, and J. H. Li, "Modeling of the dynamic characteristics and performance of a four‐cylinder double‐acting Stirling engine," International Journal of Energy Research, vol. 45, no. 3, pp. 4197-4213, 2020.
[21] 馮典樂, "雙動四汽缸史特靈引擎之理論分析與設計," 國立成功大學航空太空工程學系碩士學位論文, 台南, 2017.
[22] R. F. Barron and G. F. Nellis, Cryogenic Heat Transfer. CRC Press, 2017.
[23] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers. Springer US, 2013.
[24] G. Swift, "Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators," The Journal of the Acoustical society of America, Vol. 143, p.2110, 2018.
[25] H. Hachem, R. Gheith, F. Aloui, and S. Ben Nasrallah, "Optimization of an air-filled Beta type Stirling refrigerator," International Journal of Refrigeration, vol. 76, pp. 296-312, 2017.
[26] Y. Xie and X. Sun, "Thermodynamic Analysis of a Waste Heat Driven Vuilleumier Cycle Heat Pump," Entropy, vol. 17, no. 3, pp. 1452-1465, 2015.
[27] J. Woods and E. Bonnema, "Regression-based approach to modeling emerging HVAC technologies in EnergyPlus: A case study using a Vuilleumier-cycle heat pump," Energy and Buildings, vol. 186, pp. 195-207, 2019.
[28] P. Zou, Q. Cao, S. Wang, J. Yang, B. Luo, P. Hofbauer, J. Liu, Y. Huang and C. Ren, "A method of analyzing the respective performances of hypothetical stirling engine and stirling cooler in Vuilleumier machine," International Journal of Refrigeration, vol. 118, pp. 376-383, 2020.