簡易檢索 / 詳目顯示

研究生: 謝詠筌
Hsieh, Yung-Chuan
論文名稱: 再生室孔隙率梯度對維勒米爾式冷凍機之效能影響
Effect of Porosity Gradient of the Regenerator on the Performance of a Vuilleumier Refrigerator
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 維勒米爾式冷凍機孔隙率梯度實驗量測數值模擬
外文關鍵詞: Vuilleumier refrigerator, porosity gradient, experimental measurement, numerical model
相關次數: 點閱:134下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與一般以電能作為主要輸入能源的冷凍機械不同,維勒米爾式冷凍機熱驅動的特性,使其於近期開始得到研究者的關注,許多理論模型與參數分析的相關文獻也在近幾年陸續發表。回熱式機械中的再生室由於其兩端之間所存在的溫差,溫度梯度的產生是為必然,往復流動於其中的工作流體因溫度梯度而形成不同的物理狀態及熱力性質。本研究為因應此特性,欲在再生通道的設計上產生孔隙率梯度,使系統得以更高的效率運用外部提供之能量,藉此擁有更好的表現。以現有研究室所開發之維勒米爾式冷凍機為原型機基礎,除了為增進性能與配合實驗而進行設計改動外,針對改變內部再生室之孔隙率分布,配置具孔隙率梯度之再生室,建立實驗並探討比較其性能。建構一熱力分析之理論模型預測相同條件下之實驗結果,以更改配置後之實驗數據與理論模型之參數分析等討論不同工作條件下適宜之孔隙率分布。

    Among all types of refrigerators, Vuilleumier refrigerator is distinguished for its ability to covert external heat source into cooling power. As a member of regenerative type machines, Vuilleumier refrigerator has two regenerators that effect the performance of refrigerator at its respective sub-systems. Working fluid flow through regenerators would have variant physical and thermal properties due to temperature differences that inevitably occurred along regenerators. In the present study, porosity gradient is obtained theoretically and experimentally to adapt properties changes along regenerators. Comparing results of refrigerator with uniform porosity and porosity gradient setups, improvements of refrigerator performance occurred in porosity gradient setups under various working conditions. Validated with experiment results, theoretical model shows potential to predict desirable value and range of porosity gradient setups under different working conditions.

    摘要 I 誌謝 XIV 目錄 XVI 表目錄 XX 符號索引 XXIII 第一章 前言 1 1.1 研究背景與動機 1 1.2 論文架構 2 1.3 維勒米爾式冷凍機 3 1.3.1 簡介 3 1.3.2 機構與運作原理 4 1.3.3 特色及特性 5 1.3.4 相關研究 6 1.4 回熱式機械的再生室 8 1.4.1 材質與幾何(不鏽鋼編織網) 9 1.4.2 壓降與熱傳 9 1.5 研究目的 10 第二章 理論分析 12 2.1 起始條件 12 2.2 再生編織網之物理參數 13 2.2.1 目數、線徑與片數 13 2.2.2 孔隙率與熱傳面積 13 2.2.3 水力直徑與曲折率 15 2.3 熱力模型 17 2.3.1 移氣器位移軌跡 18 2.3.2 各腔室體積變化 18 2.3.3 平均壓力與質量 19 2.3.4 壓力與質量變化 20 2.3.5 質量流率 22 2.3.6 流體速度及相關係數 23 2.3.7 壓降與壓力修正 24 2.3.8 能量守恆方程式 26 2.3.9 焓變化量 27 2.3.10 淨輸入熱 δQin 28 2.3.11 淨輸出功 δWout 33 2.3.12 各腔室溫度與系統平均能量 34 2.4 性能 35 2.4.1 熱效率 36 2.4.2 致冷效率 36 2.4.3 轉換效率係數 37 第三章 設計與實驗 38 3.1 原型機設計 38 3.1.1 加熱頭 39 3.1.2 孔隙率階層設計 39 3.1.3 高溫密封 40 3.1.4 間隙密封 41 3.1.5 冷端移氣器材質選用 41 3.2 實驗系統 42 第四章 結果與討論 43 4.1 研究方法 43 4.2 配置 43 4.3 孔隙率基準組 44 4.4 孔隙率基準組實驗結果 44 4.4.1 馬達轉速 44 4.4.2 填充壓力 45 4.4.3 加熱/冷卻溫度 46 4.4.4 理論分析與實驗數據結果之驗證 47 4.5 孔隙率梯度理論模型分析結果 47 4.5.1 固定孔隙率與孔隙率梯度範圍 48 4.5.2 壓力與轉速之影響 49 4.6 固定孔隙率與孔隙率梯度配置實驗結果比較 50 4.7 孔隙率梯度配置理論分析與實驗結果之比較 52 第五章 結論 53 參考文獻 56

    [1] Y. Wang, X. Wang, W. Dai, and E. Luo, "A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K," Cryogenics, vol. 90, pp. 1-6, 2018.
    [2] W.-Y. Lin, X.-H. Wu, J.-L. Yang, and L.-W. Yang, "Experimental study and numerical analysis of thermocompressors with annular regenerators," International Journal of Refrigeration, vol. 36, no. 4, pp. 1376-1387, 2013.
    [3] 吳小華,楊俊玲,林文野,楊魯偉,周遠, "直线电机驱动热压缩机数值模拟及实验研究," 工程熱物理學報, vol. 32, 5,
    pp. 741-744, 2011.
    [4] 馮建華, "維勒米爾式冷凍機之理論分析與性能測試," 國立成功大學航空太空工程學系碩士學位論文, 台南, 2020.
    [5] C.-H. Cheng, J.-H. Feng, and J.-S. Huang, "Development of a vuilleumier refrigerator with crank drive mechanism based on experimental and numerical study," International Journal of Refrigeration, vol. 129, pp. 204-214, 2021.
    [6] P. Shi, L.-S. Wang, P. Schwartz, and P. Hofbauer, "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy. vol. 277, 11574, 2020.
    [7] J. Wang, C. Pan, K. Luo, L. Chen, J. Wang, and Y. Zhou, "Thermal analysis of Stirling thermocompressor and its prospect to drive refrigerator by using natural working fluid," Energy Conversion and Management, vol. 177, pp. 280-291, 2018.
    [8] T. Guo et al., "Analytical model for Vuilleumier cycle," International Journal of Refrigeration, vol. 113, pp. 126-135, 2020.
    [9] W. Dai, X. Wang, Y. Zhao, E. Luo, and Y. Zhou, "Characteristics of a VM Type Thermal Compressor for Driving a Pulse Tube Cooler," presented at the International Cryocooler Conference, Boulder, CO, 2014.
    [10] H. Chen, P. Hofbauer, and J. P. Longtin, "Multi-objective optimization of a free-piston Vuilleumier heat pump using a genetic algorithm," Applied Thermal Engineering, vol. 167, 114767, 2020.
    [11] H. Chen, C. Lin, and J. P. Longtin, "Performance analysis of a free-piston Vuilleumier heat pump with dwell-based motion," Applied Thermal Engineering, vol. 140, pp. 553-563, 2018.
    [12] G. Dogkas, "Thermodynamic Analysis of Vuilleumier Heat Pumps," PhD Thesis, School of Mechanical Engineering, National Technical University of Athens, Athens, September 2019.
    [13] G. Dogkas, P. Bitsikas, D. Tertipis, and E. Rogdakis, "Vuilleumier machine speed-effect investigation with CFD and analytical model," International Journal of Heat and Mass Transfer, vol. 143, 118513, 2019.
    [14] A. Kołodziej, J. Łojewska, M. Jaroszyński, A. Gancarczyk, and P. Jodłowski, "Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling," International Journal of Heat and Fluid Flow, vol. 33, no. 1, pp. 101-108, 2012.
    [15] H. Sun, S. Bu, and Y. Luan, "A high-precision method for calculating the pressure drop across wire mesh filters," Chemical Engineering Science, vol. 127, pp. 143-150, 2015.
    [16] F. Azizi, "On the pressure drop of fluids through woven screen meshes," Chemical Engineering Science, vol. 207, pp. 464-478, 2019.
    [17] K. V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, and V. A. Arolkar, "Design and development of porous regenerator for Stirling cryocooler using additive manufacturing," Thermal Science and Engineering Progress, vol. 11, pp. 195-203, 2019.
    [18] A. S. Nielsen, B. T. York, and B. D. MacDonald, "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, vol. 253, 113557, 2019.
    [19] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev, and M. Sadana, "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, vol. 15, 100442, 2020.
    [20] C. H. Cheng, H. S. Yang, Y. H. Tan, and J. H. Li, "Modeling of the dynamic characteristics and performance of a four‐cylinder double‐acting Stirling engine," International Journal of Energy Research, vol. 45, no. 3, pp. 4197-4213, 2020.
    [21] 馮典樂, "雙動四汽缸史特靈引擎之理論分析與設計," 國立成功大學航空太空工程學系碩士學位論文, 台南, 2017.
    [22] R. F. Barron and G. F. Nellis, Cryogenic Heat Transfer. CRC Press, 2017.
    [23] R. A. Ackermann, Cryogenic Regenerative Heat Exchangers. Springer US, 2013.
    [24] G. Swift, "Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators," The Journal of the Acoustical society of America, Vol. 143, p.2110, 2018.
    [25] H. Hachem, R. Gheith, F. Aloui, and S. Ben Nasrallah, "Optimization of an air-filled Beta type Stirling refrigerator," International Journal of Refrigeration, vol. 76, pp. 296-312, 2017.
    [26] Y. Xie and X. Sun, "Thermodynamic Analysis of a Waste Heat Driven Vuilleumier Cycle Heat Pump," Entropy, vol. 17, no. 3, pp. 1452-1465, 2015.
    [27] J. Woods and E. Bonnema, "Regression-based approach to modeling emerging HVAC technologies in EnergyPlus: A case study using a Vuilleumier-cycle heat pump," Energy and Buildings, vol. 186, pp. 195-207, 2019.
    [28] P. Zou, Q. Cao, S. Wang, J. Yang, B. Luo, P. Hofbauer, J. Liu, Y. Huang and C. Ren, "A method of analyzing the respective performances of hypothetical stirling engine and stirling cooler in Vuilleumier machine," International Journal of Refrigeration, vol. 118, pp. 376-383, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE