| 研究生: |
葉宗翰 Yeh, Tsung-Han |
|---|---|
| 論文名稱: |
氧化釩薄膜應用於光電及電子元件之研究 Investigation on the applications of VOx thin film in optoelectronic and electronic devices |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 氧化釩 、太陽能電池 、熱阻式微感測器 、氣體感測器 、記憶體選擇器 |
| 外文關鍵詞: | vanadium oxide, solar cells, microbolometers, gas sensors, selectors |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,利用磁控式射頻濺鍍系統製備氧化釩薄膜應用於鈣鈦礦太陽能電池、熱阻式紅外線感測器、二氧化氮氣體感測器及記憶體選擇器等光電及電子元件上。氧化釩材料具有高可見光穿透率、高溫度電阻係數、熱穩定性、優越的催化特性與金屬-絕緣體相變(Metal-insulator transition, MIT)性質,使得其應用相當廣泛。
本論文提出一新的界面修飾層,進而改善鈣鈦礦太陽能電池元件特性,此界面修飾層是利用真空技術製備氧化釩薄膜作為界面緩衝層,結合PEDOT:PSS成為雙層電洞載子傳輸結構。增加氧化釩界面修飾層的元件較傳統僅有PEDOT:PSS作為電洞傳輸層元件,其轉換效率由9.43%提升到13.69%,主要原因為其具有較高短路電流及較佳之填充因子。同時利用紫外光譜儀分析本研究所製備氧化釩薄膜之功函數及價電子帶最大值,以推估出其能帶,進而探討其與元件能帶之匹配程度,並利用極性及非極性溶劑所量得之接觸角推估出其薄膜表面能,進行界面附著程度之分析,經分析結果可知,氧化釩相當適合作為改善鈣鈦礦太陽能電池電洞傳輸界面材料。
本論文亦針對氧化釩熱阻式微感測器進行微小尺寸特性研究,將元件設計成空腔懸浮結構,包含鋁反射鏡、空腔、支撐懸臂、電極、感測層與鉻金屬吸收層,入射紅外光與經過反射鏡反射之紅外光形成建設性干涉,大幅提升紅外線的吸收率,且懸浮結構亦可有效減少感測層與基板接觸所產生之熱散逸,以增進元件特性。
本論文同時將由黑金/氧化釩所構成的新型p-n異質接面雙感測薄膜應用於二氧化氮氣體感測器。分別使用磁控式射頻濺鍍系統和低溫氣相冷凝系統來製備氧化釩薄膜及黑金薄膜。透過分別使用黑金感測薄膜及氧化釩感測薄膜的氣體感測器檢測二氧化氮氣體,驗證黑金/氧化釩雙感測薄膜可形成p-n異質接面。由於黑金/氧化釩雙感測薄膜具有更高的體表比及可形成p-n異質接面,在100 ppm二氧化氮濃度下工作,與傳統的氧化釩氣體感測器相比,其響應度從78.78%提升到188.15%。
最後,本論文利用釩金屬作為氧化釩記憶體選擇器的上電極。利用外加偏壓來使選擇器元件產生軟性崩潰形成導通路徑(Forming),將氧離子推向釩電極,使釩電極氧化,在釩電極和氧化釩切換層上產生具有MIT特性的相變區域,使得元件在製作過程中不需經過任何高溫退火處理即可操作。操作時只需藉由較小的閾值電壓,即可產生足夠焦耳熱,以達到相變溫度。並利用正負偏壓操作,使元件具雙極性選擇器特性。由電性量測結果得知,V/VOx/TiN選擇器表現出優越的性能,如高均勻性,短切換時間(約60 ns),強大耐用性(可操作超過109次)以及良好的可靠度和穩定性,相信它將為高密度儲存元件克服潛行電流問題提供巨大價值。
In this dissertation, vanadium oxide (VOx) films prepared with a radio frequency (RF) magnetron sputtering system were applied to optoelectronic and electronic devices, such as perovskite solar cells (PSCs), microbolometers, nitrogen dioxide (NO2) gas sensors, and memory selectors. VOx presents characteristics of high visible light transmittance, high temperature coefficient of resistance, thermodynamic stability, excellent catalytic activity, and metal-insulator transition (MIT) properties, therefore, this substance is widely used in various fields.
A novel interface modification layer (IML) is proposed in this dissertation to improve the performance of PSCs. A VOx IML is prepared as an interface buffer layer by using an RF magnetron sputtering system. In addition, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is used to form a hole transport bilayer structure. Compared with conventional PSCs that do not possess a VOx IML, PSCs with a VOx IML have a 4.26% higher power conversion efficiency mainly due to their higher short-circuit current density (JSC) and fill factor. The work function and valence band maximum of the VOx films were analyzed through ultraviolet photoelectron spectroscopy. They were used to determine the energy band diagram and energy level matching. Moreover, the contact angles measured with polar and nonpolar solvents were used to estimate the surface energy of the VOx films. Subsequently, interface adhesion was analyzed. The analysis results indicated that VOx is suitable for improving the hole transport interface of PSCs and is worthy of further research.
The performance of VOx microbolometers with small sizes was also investigated. A microbolometer has as a floating-type structure, and includes an aluminum (Al) reflector, a cavity, a support cantilever, an electrode, a sensitive layer, and a chromium (Cr) metal absorption layer. The incident infrared (IR) light and the IR light reflected by the Al reflector form a constructive interference, which considerably improves the IR absorptance capability. The floating-type structure can also effectively reduce the heat loss caused by the contact between the sensitive layer and the substrate, which improves the performance of VOx microbolometers.
A novel p-n heterojunction constructed using gold black/VOx bi-sensing membranes was used in NO2 gas sensors. The VOx and gold black films were sequentially deposited on quartz substrates by using an RF magnetron sputtering system and a vapor cooling condensation system, respectively. Scanning electron microscopy and atomic force microscopy images indicated that the gold black/VOx bi-sensing membranes had a rougher surface than the VOx sensing membranes. The detection of NO2 gas by using NO2 gas sensors with gold black and VOx sensing membranes indicated that p-n heterojunction formed in the gold black/VOx bi-sensing membranes. The gold black/VOx bi-sensing membranes had a larger surface-area-to-volume ratio than the VOx membranes did. Therefore, the gas response of prepared NO2 gas sensors was improved from 78.78% to 188.15% compared with NO2 gas sensors with VOx membranes operated under 100 ppm NO2 concentration at its respectively optimal operating temperature.
Finally, vanadium (V) was used as the top electrode in a VOx-based selector device. Electroforming was performed to produce a threshold region with the MIT property at the V electrode and VOx switching layer without performing annealing during the fabrication process. The electrical measurements indicated that the V/VOx/TiN selectors had excellent characteristics, such as high uniformity, a short switching time of 60 ns, robust endurance over 109 cycles, and good reliability and stability. The developed selector can be applied in future high-density crossbar memory devices to overcome sneak-path problems.
[1.1] G. T. Mola, E. A. A. Arbab, B. A. Taleatu, K. Kaviyarasu, I. Ahmad, and M. Maaza, “Growth and characterization of V2O5 thin film on conductive electrode,” J. Microsc., vol. 265, pp. 214-221, 2017.
[1.2] Y. Jin, H. A. Basantani, A. Ozcelik, T. N. Jackson, and M. W. Horn, “High-resistivity and high-TCR vanadium oxide thin films for infrared imaging prepared by bias target ion-beam deposition,” Proc. of SPIE, vol. 8704, 87043C, 2013.
[1.3] Y. H. Han, I. H. Choi, H. K. Kang, J. Y. Park, K. T. Kim, H. J. Shin, and S. Moon, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, pp. 260-264, 2003.
[1.4] S. Surnev, M. G. Ramsey, and F. P. Netzer, “Vanadium oxide surface studies,” Prog. Surf. Sci., vol. 73, pp. 117-165, 2003.
[1.5] Z. Shao, X. Cao, H. Luo, and P. Jin, “Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials,” NPG Asia Mater., vol. 10, pp. 581-605, 2018.
[1.6] M. Jerry, N. Shukla, H. Paik, D. G. Schlom, and S. Datta, “Dynamics of electrically driven sub-nanosecond switching in vanadium dioxide,” IEEE Silicon Nanoelectronics Workshop, 16341945, 2016.
[1.7] K. G. West, J. Lu, J. Yu, and D. Kirkwood, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A, vol. 26, pp. 133-139, 2008.
[1.8] Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, and Y. Long, “Thermochromic VO2 for energy-efficient smart windows,” Joule, vol. 2, pp. 1707-1746, 2018.
[1.9] Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultra-fast metal-insulator transition in vanadium dioxide switches,” IEEE Electron Device Lett., vol. 34, 202, 2013.
[1.10] K. Schneider and W. Maziarz, “V2O5 thin films as nitrogen dioxide sensors,” Sensors, vol. 18, 4177, 2018.
[1.11] M. Yu, Y. Zeng, Y. Han, X. Cheng, W. Zhao, C. Liang, Y. Tong, H. Tang, and X. Lu, “Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles,” Adv. Funct. Mater., vol. 25, pp. 3534-3540, 2015.
[1.12] C. Y. Chen, T. C. Wei, P. H. Hsiao, and C. H. Hung, “Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances,” ACS Appl. Energy Mater., vol. 2, pp. 4873-4881, 2019.
[1.13] B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol., vol. 57, pp. 8-13, 2013.
[1.14] U. Schwingenschlögl and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Ann. Phys. (Leipzig), vol. 13, pp. 475-510, 2004.
[1.15] C. H. Griffiths and H. K. Eastwood, “Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide,” J. Appl. Phys., vol. 45, pp. 2201-2206, 1974.
[1.16] N. Bahlawane and D. Lenoble, “Vanadium oxide compounds: Structure, properties, and growth from the gas phase,” Chem. Vapor Depos., vol. 20, pp. 299-311, 2014.
[1.17] A. M. Makarevich, I. I. Sadykov, D. I. Sharovarov, V. A. Amelichev, A. A. Adamenkov, D. M. Tsymbarenko, A. V. Plokhih, M. N. Esaulkov, P. M. Solyankin, and A. R. Kaul, “Chemical synthesis of high quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties,” J. Mater. Chem. C, vol. 3, pp. 9197-9205, 2015.
[1.18] G. S. Nadkarni and V. S. Shirodkar, “Experiment and theory for switching in Al/V2O5/Al devices,” Thin Solid Films, vol. 105, pp. 115-129, 1983.
[1.19] M. Kang, I. Kim, S. W. Kim, J. W. Ryu, and H. Y. Park, “Metal-insulator transition without structural phase transition in V2O5 film,” Appl. Phys. Lett., vol. 98, 131907, 2011.
[1.20] G. Golan, A. Axelevitch, B. Sigalov, and B. Gorenstein, “Metal-insulator phase transition in vanadium oxides films,” Microelectron. J., vol. 34, pp. 255-258, 2003.
[1.21] K. C. Kam and A. K. Cheetham, “Thermochromic VO2 nanorods and other vanadium oxides nanostructures,” Mater. Res. Bull., vol. 41, pp. 1015-1021, 2006.
[1.22] Y. F. Zhang, M. J. Fan, X. H. Liu, C. Huang, and H. B. Li, “Beltlike V2O3@C core-shell-structured composite: Design, preparation, characterization, phase transition, and improvement of electrochemical properties of V2O3,” Eur. J. Inorg. Chem., vol. 10, pp. 1650-1659, 2012.
[1.23] F. J. Morin, “Oxides which show a metal-insulator-transition at Neel temperature,” Phys. Rev. Lett., vol. 3, pp. 34-36, 1959.
[1.24] N. F. Mott, “Metal-insulator transition,” Rev. Modern Phys., vol. 40, pp. 677-683, 1968.
[1.25] J. B. Goodenough, “The two components of crystallographic transition in VO2,” J. Solid State Chem., vol. 3, pp. 490-500, 1971.
[1.26] V Eyert, “The metal-insulator transitions of VO2: A band theoretical approach,” Ann. Phys. (Leipzig), vol. 11, pp. 650-702, 2002.
[1.27] N. Hassan, J. Riaz, M. T. Qureshi, A. Razaq, M. Rahim, A. M. Toufiq, and A. Shakoor, “Vanadium oxide (V2O3) for energy storage applications through hydrothermal route,” J. Mater. Sci.-Mater. Electron., 2018.
[1.28] T. Das, S. Tosoni, and G. Pacchioni, “Structural and electronic properties of bulk and ultrathin layers of V2O5 and MoO3,” Comput. Mater. Sci., vol. 163, pp. 230-240, 2019.
[2.1] H. Hoppe and N. S. Sariciftci, “Organic solar cells:An overview,” J. Mater. Res., vol. 19, pp. 1924-1945, 2004.
[2.2] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, pp. 542-546, 2014.
[2.3] B. Qi and J. Wang, “Open-circuit voltage in organic solar cells,” J. Mater. Chem., vol. 22, pp. 24315-24325, 2012.
[2.4] C. Vieider, S. Wissmar, P. Ericsson, U. Halldin, F. Niklaus, G. Stemme, J. E. Källhammer, H. Pettersson, D. Eriksson, H. Jakobsen, T. Kvisterøy, J. Franks, J. VanNylen, H. Vercammen, and A. VanHulsel, “Low-cost far infrared bolometer camera for automotive use,” Proc. SPIE, vol. 6542, 65421L, 2007.
[2.5] M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Alduraibi, N. Debbar, N. Yacoubi, and B. Ilahi, “Temperature coefficient of resistance and thermal conductivity of Vanadium oxide 'Big Mac' sandwich structure,” Infrared Phys. Technol., vol. 71, pp. 127-130, 2015.
[2.6] J. Schoeman and M. du Plessis, “An analytic model employing an elliptical surface area to determine the gaseous thermal conductance of uncooled VOx microbolometers,” Sens. Actuator A-Phys., vol. 250, pp. 229-236, 2016.
[2.7] P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst., vol. 6, pp. 55-61, 1997.
[2.8] H. Alaboz, Y. Demirhan, H. Yuce, G. Aygun, and L. Ozyuzer, “Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications,” Opt. Quantum Electron., vol. 49, pp. 1-10, 2017.
[2.9] M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sensing,” J. Am. Ceram. Soc., vol. 59, pp. 4-8, 1976.
[2.10] A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives,” Sens. Actuators B, vol. 171-172, pp. 25-42, 2012.
[2.11] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28-36, 2008.
[2.12] S. M. Sze and K. K. Ng, “Physics of semiconductor devices,” John Wiley & Sons, 2006.
[2.13] D. Ielmini and Y. Zhang, “Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices,” J. Appl. Phys., vol. 102, 054517, 2007.
[2.14] H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal-oxide RRAM,” Proc. IEEE, vol. 100, pp. 1951-1970, 2012.
[3.1] K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis:Nuclear or photovoltaics,” Nat. Mater., vol. 5, pp. 161-164, 2006.
[3.2] Y. Li, L. Mao, F. Tang, Q. Chen, Y. Wang, F. Ye, L. Chen, Y. Li, D. Wu, Z. Cui, J. Cai, and L. Chen, “Ambient stable large-area flexible organic solar cells using silver grid hybrid with vapor phase polymerized poly(3,4-Ethylenedioxythiophene) cathode,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 354-359, 2015.
[3.3] H. L. Huang, C. T. Lee, and H. Y. Lee, “Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers,” Org. Electro., vol. 21, pp. 126-131, 2015.
[3.4] H. Y. Lee and H. L. Huang, “Investigation performance and mechanisms of inverted polymer solar cells by pentacene doped P3HT:PCBM,” Int. J. Photoenergy, pp. 1-9, 2014.
[3.5] B. Shen, Y. Wang, Z. Hu, S. Tang, Y. Chen, J. Zhang, and Y. Zhu, “Growth of monolithically grained CH3NH3PbI3 film by a uniform intermediate phase for high performance planar perovskite solar cells,” J. Alloy. Compd., vol. 776, pp. 250-258, 2019.
[3.6] Y. Wang, S. Liu, Q. Zeng, R. Wang, W. Qin, H. Cao, L. Yang, L. Li, S. Yin, and F. Zhang, “Enhanced performance and stability of inverted planar perovskite solar cells by incorporating 1,6-diaminohexane dihydrochloride additive,” Sol. Energy Mater. Sol. Cells, vol. 188, pp. 140-148, 2018.
[3.7] Z. Rao, B. Du, C. Huang, L. Shu, P. Lin, N. Fu, and S. Ke, “Revisit of amorphous semiconductor InGaZnO4: A new electron transport material for perovskite solar cells,” J. Alloy. Compd., vol. 789, pp. 276-281, 2019.
[3.8] X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science, vol. 353, pp. 58-62, 2016.
[3.9] X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, and M. Zhou, “Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer,” J. Mater. Chem. A, vol. 5, pp. 17499-17505, 2017.
[3.10] M. Wang, H. Wang, W. Li, X. Hu, K. Sun, and Z. Zang, “Defect passivation using ultrathin PTAA layer for efficient and stable perovskite solar cells with high fill factor and eliminated hysteresis,” J. Mater. Chem. A, vol. 7, pp. 26421-26428, 2019.
[3.11] T. Zhou, M. Wang, Z. Zang, and L. Fang, “Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation,” Adv. Energy Mater., vol. 9, 1900664, 2019.
[3.12] M. Wang, Z. Zang, B. Yang, X. Hu, K. Sun, and L. Sun, “Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient,” Sol. Energy Mater. Sol. Cells, vol. 7, pp. 117-123, 2018.
[3.13] T. H. Yeh, H. Y. Lee, and C. T. Lee, “Performance improvement of perovskite solar cells using vanadium oxide interface modification layer,” J. Alloy. Compd., vol. 822, 153620, 2020.
[3.14] Q. Yi, P. Zhai, Y. Sun, Y. Lou, J. Zhao, B. Sun, B. Patterson, H. Luo, W. Zhang, L. Jiao, H. Wang, and G. Zou, “Aqueous solution-deposited molybdenum oxide films as an anode interfacial layer for organic solar cells,” ACS Appl. Mater. Interfaces, vol. 7, pp. 18218-18224, 2015.
[3.15] C. Xu, P. Cai, X. Zhang, Z. Zhang, X. Xue, J. Xiong, and J. Zhang, “A wide temperature tolerance, solution-processed MoOx interface layer for efficient and stable organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 159, pp. 136-142, 2017.
[3.16] C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, “Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells,” ACS Appl. Mater. Interfaces, vol. 3, pp. 3244-3247, 2011.
[3.17] Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, and Y. Qiang, “High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells,” J. Alloy. Compd., vol. 810, 151970, 2019.
[3.18] Y. H. Seo, I. H. Cho, and S. I. Na, “Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells,” J. Alloy. Compd., vol. 797, pp. 1018-1024, 2019.
[3.19] K. C. Wang, P. S. Shen, M. H. Li, S. Chen, M. W. Lin, P. Chen, and T. F. Guo, “Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells,” ACS Appl. Mater. Interfaces, vol. 6, pp. 11851-11858, 2014.
[3.20] F. Guillain, D. Tsikritzis, G. Skoulatakis, S. Kennou, G. Wantz, and L. Vignau, “Annealing-free solution-processed tungsten oxide for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 122, pp. 251-256, 2014.
[3.21] L. You, B. Liu, T. Liu, B. Fan, Y. Cai, L. Guo, and Y. Sun, “Organic solar cells based on WO2.72 nanowire anode buffer layer with enhanced power conversion efficiency and ambient stability,” ACS Appl. Mater. Interfaces, vol. 9, pp. 12629-12636, 2017.
[3.22] H. T. Lien, D. P. Wong, N. H. Tsao, C. I. Huang, C. Su, K. H. Chen, and L. C. Chen, “Effect of copper oxide oxidation state on the polymer-based solar cell buffer layers,” ACS Appl. Mater. Interfaces, vol. 6, pp. 22445-22450, 2014.
[3.23] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “High-performance polymer solar cells with solution-processed and environmentally friendly CuOx anode buffer layer,” ACS Appl. Mater. Interfaces, vol. 5, pp. 10658-10664, 2013.
[3.24] K. Wang, H. Ren, C. Yi, C. Liu, H. Wang, L. Huang, H. Zhang, A. Karim, and X. Gong, “Solution-processed Fe3O4 magnetic nanoparticle thin film aligned by an external magnetostatic field as a hole extraction layer for polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 5, pp. 10325-10330, 2013.
[3.25] M. F. Xu, X. B. Shi, Z. M. Jin, F. S. Zu, Y. Liu, L. Zhang, Z. K. Wang, and L. S. Liao, “Aqueous solution-processed GeO2: an anode interfacial layer for high performance and air-stable organic solar cells,” ACS Appl. Mater. Interfaces, vol. 5, pp. 10866-0873, 2013.
[3.26] S. P. Cho, J. S. Yeo, D. Y. Kim, S. I. Na, and S. S. Kim, “Brush painted V2O5 hole transport layer for efficient and air-stable polymer solar cells,” Sol. Energy Mater. Sol. Cells, vol. 132, pp. 196-203, 2015.
[3.27] X. Yao, W. Xu, X. Huang, J. Qi, Q. Yin, X. Jiang, F. Huang, X. Gong, and Y. Cao, “Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells,” Org. Electro., vol. 47, pp. 85-93, 2017.
[3.28] X. Yao, J. Qi, W. Xu, X. Jiang, X. Gong, and Y. Cao, “Cesium-doped vanadium oxide as the hole extraction layer for efficient perovskite solar cells,” ACS Omega, vol. 3, pp. 1117-1125, 2018.
[3.29] H. Cong, D. Han, B. Sun, D. Zhou, C. Wang, P. Liu, and L. Feng, “Facile approach to preparing a vanadium oxide hydrate layer as a hole-transport layer for high-performance polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 9, pp. 18087-18094, 2017.
[3.30] X. Bao, Q. Zhu, T. Wang, J. Guo, C. Yang, D. Yu, N. Wang, W. Chen, and R. Yang, “Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells,” ACS Appl. Mater. Interfaces, vol. 7, pp. 7613-7618, 2015.
[3.31] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X‐ray Photoelectron Spectroscopy,” Perkin‐Elmer, Minnesota, 1993.
[3.32] K. C. Chen, C. Y. Jian, Y. J. Chen, S. C. Lee, S. W. Chang, and S. Y. Lin, “Current enhancement and bipolar current modulation of top-gate transistors based on monolayer MoS2 on three-layer WxMo1-xS2,” ACS Appl. Mater. Interfaces, vol. 10, pp. 24733-24738, 2018.
[3.33] C. R. Wu, X. R. Chang, T. W. Chu, H. A. Chen, C. H. Wu, and S. Y. Lin, “Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth,” Nano Lett., vol. 16, pp. 7093-7097, 2016.
[3.34] S. M. Abdullah, S. Rafique, M. I. Azmer, A. Jilani, V. K. Sajith, and A. Supangat, “Modified photo-current response of an organic photodiode by using V2O5 in both hole and electron transport layers,” Sens. Actuators A, vol. 272, pp. 334-340, 2018.
[3.35] C. T. Lee, Y. H. Liu, and H. Y. Lee, “Stacked triple ultraviolet-band metal-semiconductor–metal photodetectors,” IEEE Photon. Technol. Lett., vol. 31, pp. 15-18, 2019.
[3.36] M. Yildirim, “Characterization of the framework of Cu doped TiO2 layers: An insight into optical, electrical and photodiode parameters,” J. Alloy. Compd., vol. 773, pp. 890-904, 2019.
[3.37] D. Y. Jiang, J. M. Qin, X. Wang, S. Gao, Q. C. Liang, and J. X. Zhao, “Optical properties of NiO thin films fabricated by electron beam evaporation,” Vacuum, vol. 86, pp. 1083-1086, 2012.
[3.38] D. W. Van Krevelen, “Properties of Polymers, fourth ed.,” Elsevier, Oxford, 2009.
[3.39] J. S. Kim, R. H. Friend, and F. Cacialli, “Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements,” J. Appl. Phys., vol. 86, pp. 2774-2778, 1999.
[4.1] E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine,” Physiol. Meas., vol. 33, pp. 33-46, 2012.
[4.2] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg., vol. 196, pp. 523-526, 2008.
[4.3] C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol., vol. 25, 063001, 2012.
[4.4] H. Wu, Y. Jiang, J. Li, X. Ma, J. Song, H. Yu, D. Fu, Y. Xu, H. Zhu, and G. Song, “Performance analysis of an N-structure type-II superlattice photodetector for long wavelength infrared applications,” J. Alloys Compd., vol. 684, pp. 663-668, 2016.
[4.5] P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum., vol. 75, pp. 1134-1148, 2004.
[4.6] N. M. Shorrocks, R. W Whatmore, and P. C. Osband, “Lead scandium tantalate for thermal detector applications,” Ferroelectrics, vol. 106, pp. 387-392, 1990.
[4.7] J. Schmidt and I. Solomon, “High‐sensitivity magnetic resonance by bolometer detection,” J. Appl. Phys., vol. 37, pp. 3719-3724, 1966.
[4.8] P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys., vol. 76, pp. 1-24, 1994.
[4.9] W. S. Boyle and K. F. Rodgers, “Performance characteristics of a new low-temperature bolometer,” J. Opt. Soc. Am., vol. 49, pp. 66-69, 1959.
[4.10] D. S. Tezcan, S. Eminoglu, and T. Akin, “A low-cost uncooled infrared microbolometer detector in standard CMOS technology,” IEEE Trans. Electron Devices, vol. 50, pp. 494-502, 2003.
[4.11] B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd., vol. 715, pp. 129-136, 2017.
[4.12] C. B. Aiken, W. H. Carter, and F. S. Philips, “The production of film type bolometers with rapid response,” Rev. Sci. Instrum., vol. 17, pp. 377-385, 1946.
[4.13] V. Y. Zerov, V. G. Malyarov, and I. A. Khrebtov, “Calculational modelling of the main characteristics of an uncooled linear microbolometer array,” J. Opt. Technol., vol. 71, pp. 153-157, 2004.
[4.14] M. Galeazzi and D. McCammon, “A microcalorimeter and bolometer model,” J. Appl. Phys., vol. 93, pp. 4856-4869, 2003.
[4.15] J. S. Shie and P. K. Weng, “Design considerations of metal-film bolometer with micromachined floating membrane,” Sens. Actuator A-Phys., vol. 33, pp. 183-189, 1992.
[4.16] M. H. Unewisse, K. C. Liddiard, B. I. Craig, S. J. Passmore, R. J. Watson, R. E. Clarke, and O. Reinhold, “Semiconductor film bolometer technology for uncooled IR sensors,” Proc. SPIE, vol. 2552, pp. 77-87, 1995.
[4.17] A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett., vol. 69, pp. 1801-1803, 1996.
[4.18] B. Wang, J. Lai, H. Li, H. Hu, and S. Chen, “Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer,” Infrared Phys. Technol., vol. 57, pp. 8-13, 2013.
[4.19] E. M. Smith, D. Panjwani, J. Ginn, A. P. Warren, C. Long, P. Figuieredo, C. Smith, J. Nath, J. Perlstein, N. Walter, C. Hirschmugl, R. E. Peale, and D. Shelton, “Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber,” Appl. Opt., vol. 55, pp. 2071-2078, 2016.
[4.20] L. N. Son, T. Tachiki, and T. Uchida, “Characteristics of vanadium oxide thin films prepared by metal-organic decomposition for bolometer detectors,” Jpn. J. Appl. Phys., vol. 50, 025803, 2011.
[4.21] M. S. Han, D. H. Kim, H. J. Ko, and H. Kim, “Vanadium oxide microbolometer using ZnO sandwich layer,” Appl. Sci. Converg. Technol., vol. 24, pp. 178-183, 2015.
[4.22] C. Vieider, S. Wissmar, P. Ericsson, U. Halldin, F. Niklaus, G. Stemme, J. E. Källhammer, H. Pettersson, D. Eriksson, H. Jakobsen, T. Kvisterøy, J. Franks, J. VanNylen, H. Vercammen, and A. VanHulsel, “Low-cost far infrared bolometer camera for automotive use,” Proc. SPIE, vol. 6542, 65421L, 2007.
[4.23] H. Y. Lee, C. L. Wu, C. H. Kao, C. T. Lee, S. F. Tang, W. J. Lin, H. C. Chen, and J. C. Lin, “Investigated performance of uncooled tantalum-doped VOx floating-type microbolometers,” Appl. Surf. Sci., vol. 354, pp. 106-109, 2015.
[4.24] O. Y. Mang, “Measurement of effective absorptance on microbolometers,” IEEE Trans. Instrum. Meas., vol. 55, pp. 1012-1016, 2006.
[4.25] G. Turban and M. Rapeaux, “Dry etching of polyimide in O2-CF4 and O2-SF6 plasmas,” J. Electrochem. Soc., vol. 130, pp. 2231-2236, 1983.
[4.26] T. H. Yeh, C. K. Tsai, S. Y. Chu, H. Y. Lee, and C. T. Lee, “Performance improvement of Y-doped VOx microbolometers with nanomesh antireflection layer,” Opt. Express, vol.han 28, pp. 6433-6442, 2020.
[4.27] H. Alaboz, Y. Demirhan, H. Yuce, G. Aygun, and L. Ozyuzer, “Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications,” Opt. Quantum Electron., vol. 49, pp. 1-10, 2017.
[4.28] J. Schoeman and M. du Plessis, “An analytic model employing an elliptical surface area to determine the gaseous thermal conductance of uncooled VOx microbolometers,” Sens. Actuator A-Phys., vol. 250, pp. 229-236, 2016.
[5.1] M. Penza, C. Martucci, and G. Cassano, “NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers,” Sens. Actuators B, vol. 50, pp. 52-59, 1998.
[5.2] C. T. Lee, H. Y. Lee, and Y. S. Chiu, “Performance improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3 complex nanoparticle sensing layer,” IEEE Sens. J., vol. 16, pp. 7581-7585, 2016.
[5.3] Y. Şahin, S. Öztürk, N. Kılınç, A. Kösemen, M. Erkovan, and Z. Z. Öztürk, “Electrical conduction and NO2 gas sensing properties of ZnO nanorods,” Appl. Surf. Sci., vol. 303, pp. 90-96, 2014.
[5.4] H. Y. Lee, Y. C. Heish, and C. T. Lee, “High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane,” J. Alloys Compd., vol. 773, pp. 950-954, 2019.
[5.5] Y. Shen, H. Bi, T. Li, X. Zhong, X. Chen, A. Fan, and D. Wei, “Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure,” Appl. Surf. Sci., vol. 434, pp. 922-931, 2018.
[5.6] B. Behera and S. Chandra, “Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application,” Mater. Sci. Semicond. Process, vol. 86, pp. 79-84, 2018.
[5.7] B. Bhangare, N. S. Ramgir, A. Pathak, K. R. Sinju, A. K. Debnath, S. Jagtap, N. Suzuki, K. P. Muthe, C. Terashima, D. K. Aswal, S. W. Gosavi, and A. Fujishima, “Role of sensitizers in imparting the selective response of SnO2/RGO based nanohybrids towards H2S, NO2 and H2,” Mater. Sci. Semicond. Process, vol. 105, 104726, 2020.
[5.8] Y. Gui, H. Wang, K. Tian, L. Yang, H. Guo, H. Zhang, S. Fang, and Y. Wang, “Enhanced gas sensing properties to NO2 of SnO2/rGO nanocomposites synthesized by microwave-assisted gas-liquid interfacial method,” Ceram. Int., vol. 44, pp. 4900-4907, 2018.
[5.9] I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, and H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett., vol. 6, pp. 2009-2013, 2006.
[5.10] Z. Zhu, S. Lin, C. Wu, and R. Wu, “Synthesis of TiO2 nanowires for rapid NO2 detection,” Sens. Actuators A, vol. 272, pp. 288-294, 2018.
[5.11] L. Y. Jian, H. Y. Lee, and C. T. Lee, “Surface morphology-dependent sensitivity of thin-film-structured indium oxide-based NO2 gas sensors,” J. Electron. Mater., vol. 48, pp. 2391-2397, 2019.
[5.12] Y. Shen, X. Zhong, J. Zhang, T. Li, S. Zhao, B. Cui, D. Wei, Y. Zhang, and K. Wei, “In-situ growth of mesoporous In2O3 nanorod arrays on a porous ceramic substrate for ppb-level NO2 detection at room temperature,” Appl. Surf. Sci., vol. 498, 143873, 2019.
[5.13] S. T. Navale, D. K. Bandgar, S. R. Nalage, G. D. Khuspe, M. A. Chougule, Y. D. Kolekar, S. Sen, and V. B. Patil, “Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications,” Ceram. Int., vol. 39, pp. 6453-6460, 2013.
[5.14] S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, and C. C. Liu, “Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties,” Sens. Actuators B, vol. 174, pp. 51-58, 2012.
[5.15] M. B. Rahmani, S. H. Keshmiri, J. Yu, A. Z. Sadek, L. A. Mashat, A. Moafi, K. Latham, Y. X. Li, W. Wlodarski, and K. K. Zadeh, “Gas sensing properties of thermally evaporated lamellar MoO3,” Sens. Actuators B, vol. 145, pp. 13-19, 2010.
[5.16] A. A. Mane, M. P. Suryawanshi, J. H. Kim, and A. V. Moholkar, “Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection,” Appl. Surf. Sci., vol. 403, pp. 540-550, 2017.
[5.17] S. D. Han, H. C. Moon, M. S. Noh, J. J. Pyeon, Y. S. Shim, S. Nahm, J. S. Kim, K. S. Yoo, and C. Y. Kang, “Self-doped nanocolumnar vanadium oxide thin films for highly selective NO2 gas sensing at low temperature,” Sens. Actuators B, vol. 241, pp. 40-47, 2017.
[5.18] R. Rella, P. Siciliano, A. Cricenti, R. Generosi, and C. Coluzza, “A study of physical properties and gas-surface interaction of vanadium oxide thin films,” Thin Solid Films, vol. 349, pp. 254-259, 1999.
[5.19] S. Yan, X. Liang, H. Song, S. Ma, and Y. Lu, “Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity,” Ceram. Int., vol. 44, pp. 358-363, 2018.
[5.20] Q. Meng, J. Cui, Y. Tang, Z. Han, K. Zhao, G. Zhang, and Q. Diao, “Solvothermal synthesis of dual-porous CeO2-ZnO composite and its enhanced acetone sensing performance,” Ceram. Int., vol. 45, pp. 4103-4107, 2019.
[5.21] X. Zhang, P. Guo, Q. Pan, K. Shi, and G. Zhang, “Novel p-n heterojunction Co3O4/ AlOOH composites materials for gas sensing at room temperature,” J. Alloys Compd., vol. 727, pp. 514-521, 2017.
[5.22] N. Jayababu, M. Poloju, J. Shruthi, and M. V. R. Reddy, “Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature sensor,” Mater. Sci. Semicond. Process, vol. 102, 104591, 2019.
[5.23] X. Jiang, H. Tai, Z. Ye, Z. Yuan, C. Liu, Y. Su, and Y. Jiang, “Novel p-n heterojunction-type rGO/CeO2 bilayer membrane for room-temperature nitrogen dioxide detection,” Mater. Lett., vol. 186, pp. 49-52, 2017.
[5.24] T. H. Yeh, S. Y. Chu, H. Y. Lee, and C. T. Lee, “Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes,” Mater. Sci. Semicond. Process, vol. 115, 105125, 2020.
[5.25] S. P. Gaur, P. Kothari, K. Maninder, P. Kumar, K. Rangra, and D. Kumar, “Development and integration of near atmospheric N2 ambient sputtered Au thin film for enhanced infrared absorption,” Infrared Phys. Technol., vol. 82, pp. 154-160, 2017.
[5.26] C. T. Lee, “Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes,” Mater., vol. 3, pp. 2218-2259, 2010.
[5.27] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, 073119, 2010.
[5.28] H. Wiame, L. Bois, P. Lharidon, Y. Laurent, and P. Grange, “Synthesis and XPS characterization of a novel aluminovanadate oxynitride basic catalyst: Influence of nitridation temperature,” Solid State Ion., vol. 101-103, pp. 755-759, 1997.
[5.29] A. Zhang and J. Zhang, “Characterization and photocatalytic properties of Au/BiVO4 composites,” J. Alloy. Compd., vol. 491, pp. 631-635, 2010.
[5.30] W. Yan, M. Hu, D. Wang, and C. Li, “Room temperature gas sensing properties of porous silicon/ V2O5 nanorods composite,” Appl. Surf. Sci., vol. 346, pp. 216-222, 2015.
[5.31] X. Qiang, M. Hu, L. Zhou, and J. Liang, “Pd nanoparticles incorporated porous silicon/V2O5 nanopillars and their enhanced p-type NO2-sensing properties at room temperature,” Mater. Lett., vol. 231, pp. 194-197, 2018.
[6.1] H. S. Philip Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal-oxide RRAM,” Proc. IEEE, vol. 100, pp. 1951-1970, 2012.
[6.2] T. M. Tsai, K. C. Chang, T. C. Chang, Y. E. Syu, S. L. Chuang, G. W. Chang, G. R. Liu, M. C. Chen, H. C. Huang, S. K. Liu, Y. H. Tai, D. S. Gan, Y. L. Yang, T. F. Young, B. H. Tseng, K. H. Chen, M. J. Tsai, C. Ye, H. Wang, and S. M. Sze, “Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications,” IEEE Electron Device Lett., vol. 33, pp. 1696-1698, 2012.
[6.3] T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Mater. Today, vol. 19, pp. 254-264, 2016.
[6.4] J. G. Zhu, “Magnetoresistive random access memory: The path to competitiveness and scalability,” Proc. IEEE, vol. 96, pp. 1786-1798, 2008.
[6.5] D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science, vol. 336, pp. 1566-1569, 2012.
[6.6] R. Rosezin, E. Linn, L. Nielen, C. Kügeler, R. Bruchhaus, and R. Waser, “Integrated complementary resistive switches for passive high-density nanocrossbar arrays,” IEEE Electron Device Lett., vol. 32, pp. 191-193, 2011.
[6.7] J. J. Huang, Y. M. Tseng, C. W. Hsu, and T. H. Hou, “Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications,” IEEE Electron Device Lett., vol. 32, pp. 1427-1429, 2011.
[6.8] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nat. Mater., vol. 9, pp. 403-406, 2010.
[6.9] G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, and B. Kurdi, “Access devices for 3D crosspoint memory,” J. Vac. Sci. Technol. B, vol. 32, 040802, 2014.
[6.10] K. Zheng, J. L. Zhao, X. W. Sun, V. Q. Vinh, K. S. Leck, R. Zhao, Y. G. Yeo, L. T. Law, and K. L. Teo, “Resistive switching in a GaOx-NiOx p-n heterojunction,” Appl. Phys. Lett., vol. 101, 143110, 2012.
[6.11] F. Gül, “Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array,” Results Phys., vol. 12, pp. 1091-1096, 2019.
[6.12] X. Zhou, D. Gu, Y. Li, H. Qin, Y. Jiang, and J. Xu, “A high performance electroformed single-crystallite VO2 threshold switch,” Nanoscale, vol. 11, pp. 22070-22078, 2019.
[6.13] A. Chen, G. Ma, Z. Zhang, C. Y. Lin, C. C. Lin, T. C. Chang, L. Tao, and H. Wang, “Multi-functional controllable memory devices applied for 3D integration based on a single niobium oxide layer,” Adv. Electron. Mater., 1900756, 2019.
[6.14] W. Xue, G. Liu, Z. Zhong, Y. Dai, J. Shang, Y. Liu, H. Yang, X. Yi, H. Tan, L. Pan, S. Gao, J. Ding, X. -H. Xu, and R. W. Li, “A 1D vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal-insulator transition,” Adv. Mater., vol. 29, 1702162, 2017.
[6.15] X. Liu, S. K. Nandi, D. K. Venkatachalam, K. Belay, S. Song, and R. G. Elliman, “Reduced threshold current in NbO2 selector by engineering device structure,” IEEE Electron Device Lett., vol. 35, pp. 1055-1057, 2014.
[6.16] C. K. Chen, C. Y. Lin, P. H. Chen, T. C. Chang, C. C. Shih, Y. T. Tseng, H. X. Zheng, Y. C. Chen, Y. F. Chang, C. C. Lin, H. C. Huang, W. C. Huang, H. Wang, and S. M. Sze, “The demonstration of increased selectivity during experimental measurement in filament-type vanadium oxide-based selector,” IEEE Trans. Electron Devices, vol. 65, pp. 4622-4627, 2018.
[6.17] M. Son, X. Liu, S. Md. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, S. Jung, M. H. Ham, and H. Hwang, “Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications,” IEEE Electron Device Lett., vol. 3, pp. 718-720, 2012.
[6.18] M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, “Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications,” IEEE Electron Device Lett., vol. 32, pp. 1579-1581, 2011.
[6.19] S. Won, S. Y. Lee, J. Hwang, J. Park, and H. Seo, “Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx,” Electron. Mater. Lett., vol. 14, pp. 14-22, 2018.
[6.20] I. P. Radu, B. Govoreanu, K. Martens, M. Toeller, A. P. Peter, M. R. Ikram, L. Zhang, H. Hody, W. Kim, P. Favia, T. Conard, H. Y. Chou, B. Put, V. Afanasiev, A. Stesmans, M. Heyns, S. D. Gendt, and M. Jurczak, “Vanadium dioxide for selector applications,” ECS Transactions, vol. 58, pp. 249-258, 2013.
[6.21] Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultra-fast metal-insulator transition in vanadium dioxide switches,” IEEE Electron Device Lett., vol. 34, pp. 220-222, 2013.
[6.22] A. Rakshit, M. Mukherjee, and S. Chakraborty, “Effect of oxygen content on the electrical properties of sputter deposited vanadium oxide thin-films,” Mater. Sci. Semicond. Process, vol. 88, pp. 127-131, 2018.
[6.23] X. Xiao, H. Zhang, G. Chai, Y. Sun, T. Yang, H. Cheng, L. Chen, L. Miao, and G. Xu, “A cost-effective process to prepare VO2 (M) powder and films with superior thermochromic properties,” Mater. Res. Bull., vol. 51, pp. 6-12, 2014.
[6.24] J. J. Huang, Y. M. Tseng, W. C. Luo, C. W. Hsu, and T. H. Hou, “One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications,” IEDM Tech. Dig., pp. 31.7.1-31.7.4, 2011.
[6.25] Y. J. Huang and S. C. Lee, “Graphene/h-BN heterostructures for vertical architecture of RRAM design,” Sci Rep, vol. 7, 9679, 2017.
[6.26] C. Y. Lin, P. H. Chen, T. C. Chang, K. C. Chang, S. D. Zhang, T. M. Tsai, C. H. Pan, M. C. Chen, Y. T. Su, Y. T. Tseng, Y. F. Chang, Y. C. Chen, H. C. Huang, and S. M. Sze, “Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode,” Nanoscale, vol. 9, pp. 8586-8590, 2017.
[6.27] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28-36, 2008.
校內:2025-06-06公開