簡易檢索 / 詳目顯示

研究生: 黎瀞謙
Li, Ching-Chien
論文名稱: 綠輝石在高壓下之壓縮行為研究
Study of omphacite under high pressure experiment
指導教授: 龔慧貞
Kung, Jennifer
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 61
中文關鍵詞: 綠輝石固溶體鑽石高壓砧高壓實驗狀態方程式體彈模量
外文關鍵詞: Omphacite, Solid Solution, Diamond Anvil Cell, High Pressure Experiment, Equation of State, Bulk modulus
相關次數: 點閱:87下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於綠輝石的化學成分分佈範圍非常廣,雖然前人已歸納出其彈性模量會隨著化學成分而變化,但還不能描述前人研究中所呈現各彈性模量對化學成分的離散情形。因此本研究將以不同綠輝石之化學成分做進一步的探討。
    本研究利用鑽石高壓砧及X光進行現地高壓X光粉末繞射實驗,研究兩個不同化學成分樣本(低硬玉輝石及高硬玉輝石)體積隨壓力(P-V)的變化,推算各樣本的彈性模量K值(及其壓力的一階導數K’),並比較二成分綠輝石之彈性模量。
    本研究在室溫下收集兩個樣本在實驗壓力範圍(0~23.4 GPa)內的體積-壓力資料,兩個樣本皆未觀察到相變。在本研究中,低硬玉輝石的體彈模量(K值)為116(1) GPa當K’=4或120(2) GPa當K’=3.1(3);高硬玉輝石的體彈模數為118(2) GPa當K’=4或117(7) GPa當K’=4.3(23)。K值及K’值的重疊代表本研究中兩個樣本的壓縮行為非常相似。本研究兩個樣本與前人研究加以比較可發現,化學成分及結構均會影響綠輝石的K值大小。除高硬玉輝石之外,其他樣本的K與V0的關係可以一個線性關係K= 484.73-0.84V0來描述,而各樣本的Jd含量與K之間可以一線性關係K=114.0+0.3(Jd mol%)來描述。以C2/c空間群的樣本來說,各樣本的分佈可以一個二次方程式K = 113.4 + 0.5822(Jd mol%) - 0.0028(Jd mol%)2描述;P2/n空間群的綠輝石受限於實驗樣品的個數,彈性模量與化學成分間的關係尚未能完整描述。

    Due to the wide composition range and the similarity of structures, previous studies suggested that the bulk modulus (K) of omphacite varies with composition. However, this does not fully describe the scattering of the bulk moduli versus chemical composition presented in previous studies. Therefore, omphacite pyroxenes with different chemical composition were used for further investigation in this study.
    In the present study, in-situ high pressure powder X-ray diffraction experiments were performed using diamond anvil cell. Two specimens with different chemical composition (one with low jadeite content and the other with high jadeite content) were used to study the bulk modulus (K) and its pressure derivatives (K’).
    The P-V data for two omphacite pyroxenes with space group P2/n were collected at room temperature up to 23.4 GPa. No phase transition was observed in these two specimens in the studied pressure range. The bulk modulus of low jadeite content omphacite is 116(1) GPa when K'=4 or 120(2) GPa when K’=3.1(3), and that of high jadeite content omphacite is 118(2) GPa when K'=4 or 117(7) GPa when K’=4.3(23). The values of K and K’ indicate that the compression behavior in both studied pyroxenes is very similar. Compared with previous studies, this study suggests that the change of bulk modulus in different omphacite pyroxenes can be described by considering both chemical composition and crystal structure factors at the same time. Except of high jadeite content sample used in this study, the relation between K and V0 of all the samples can be described with a linear relation K= 484.73-0.84V0. The relation between K and chemical composition (Jd) of all the samples(except high jadeite content sample used in this study) can also be described with a linear relation K=114.0+0.3(Jd mol%). The K-Jd relation for C2/c-structure omphacite is K = 113.4 + 0.5822(Jd mol%) - 0.0028(Jd mol%)2; however, the trend in P2/n-structured omphacite pyroxenes remains unclear due to the numbers of studied specimens.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 V 圖目錄 V 第一章、簡介 1 1-1 綠輝石 2 1-2 前人研究探討 4 1-2-1 綠輝石的彈性常數 4 1-2-2 固溶體與體彈模量變化 6 1-3 斜輝石的壓縮行為 7 第二章、研究步驟 9 2-1 樣本描述 9 2-2 樣本處理與挑選 10 2-2-1 磁選 10 2-2-2 人工挑選 11 2-3 化學成分分析 11 2-4 X光單晶繞射實驗 12 2-5 現地高壓X光粉末繞射實驗 13 2-5-1 高壓實驗 13 2-5-2 X光粉末繞射實驗 14 2-6 體彈模量K之決定—壓力(P)-體積(V)狀態方程式 16 第三章、結果 19 3-1 化學成分分析 19 3-2 常溫常壓晶格參數及化學成分分佈 21 3-3 同步輻射粉末X光繞射實驗結果 22 3-3-1 原始圖譜展開圖 22 3-3-2 SPrin8資料預探討(Pretest) 24 3-3-3 一維繞射圖譜 27 3-4 晶格參數隨壓力變化之結果 30 3-5 體彈模量計算及比較 35 第四章、討論 40 4-1 化學成分與前人研究比較 40 4-2 常溫常壓下物理性質與前人研究比較 41 4-3 壓縮行為與前人研究比較 43 4-4 彈性性質與結晶結構、結晶化學之關係 48 第五章、結論 50 中文參考文獻 51 英文參考文獻 51 附錄:原始實驗數據 54

    中文參考文獻
    余樹楨,晶體之結構與性質,渤海堂文化事業有限公司,台北,569頁,民國九十二年
    黃怡禎,礦物學,地球科學文教基金會,台北,686頁,民國九十一年

    英文參考文獻
    Anderson, D. L. and O. L. Anderson "Brief Report The Bulk Modulus-Volume Relationship for Oxides." J. Geophys. Res. 75(17): 3494-3500. (1970).
    Angel, R. J. Equations of state. High-Temperature and High-Pressure Crystal Chemistry. Washington, Mineralogical Soc America. 41: 35-59. (2000).
    Ballaran, T. B., F. Nestola, et al. "Bulk modulus variation along the diopside-kosmochlor solid solution." Eur J Mineral 21(3): 591-597. (2009).
    Birch, F. "Finite Elastic Strain of Cubic Crystals." Physical Review 71(11): 809. (1947).
    Birch, F. "EQUATION OF STATE AND THERMODYNAMIC PARAMETERS OF NACL TO 300-KBAR IN THE HIGH-TEMPERATURE DOMAIN." Journal of Geophysical Research-Solid Earth and Planets 91(B5): 4949-4954. (1986).
    Carpenter, M. "Mechanisms of exsolution in sodic pyroxenes." Contributions to Mineralogy and Petrology 71(3): 289-300. (1980).
    Carpenter, M. "Time-Temperature-Transformation (TTT) Analysis of Cation Disordering in Omphacite." Contributions to Mineralogy and Petrology 78: 433-440. (1981).
    Green, E., T. Holland, et al. "An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks." American Mineralogist, 92: 1181-1189. (2007).
    Hammersley, A. P., S. O. Svensson, et al. "Two-dimensional detector software: From real detector to idealised image or two-theta scan." High Pressure Research: An International Journal 14(4): 235-248. (1996).
    Hazen, R. M. and R. T. Downs High-Temperature & High-Pressure Crystal Chemistry. Washington, D.C., Mineralogical Society of America. (2001).
    Heinz, D. L. and R. Jeanloz "THE EQUATION OF STATE OF THE GOLD CALIBRATION STANDARD." Journal of Applied Physics 55(4): 885-893. (1984).
    Kandelin, J. and D. J. Weidner "THE SINGLE-CRYSTAL ELASTIC PROPERTIES OF JADEITE." Physics of The Earth and Planetary Interiors 50(3): 251-260. (1988).
    Katerinopoulou, A., A. Katerinopoulos, et al.. "Crystal chemistry, structure analyses and phase transition experiment on an omphacite from eclogitic metagabbro from Syros island, Greece." Mineralogy and Petrology 91(1): 117-128. (2007)
    Katerinopoulou, A., M. Musso, et al. "A Raman spectroscopic study of the phase transition in omphacite." Vibrational Spectroscopy 48(2): 163-167. (2008).
    Larson, A. C. and R. B. Von Dreele General Structure Analysis System (GSAS). Los Alamos National Laboratory Report. (2004).
    Levien, L., D. Weidner, et al.. "Elasticity of diopside." Physics and Chemistry of Minerals 4(2): 105-113. (1979)
    Liu, Y.-H., H.-J. Yang, et al.. "Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith characteristics." Chemical Geology 239(1-2): 64-82. (2007)
    Liu, Y. H., H. J. Yang, et al. "Kyanite Formation and Element Fractionation in the High-Al Eclogites from the Sulu UHP Metamorphic Terraned." Terrestrial Atmospheric and Oceanic Sciences 21(2): 277-298. (2010).
    Matsumoto, T., M. Tokonami, et al. "The Crystal Structure of Omphacit." A me rican M ine ralogist 60: 634-641. (1975).
    McCarthy, A. C., R. T. Downs, et al. "Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite." American Mineralogist 93(1): 198-209. (2008).
    McCormick, T., R. M. Hazen, et al. "Compressibility of omphacite to 60 kbar: Role of vacancies." American Mineralogist 74: 1287-1292. (1989).
    Morimoto, N. "Nomenclature of Pyroxenes." Mineralogical Magazine 52: 535-550. (1988).
    Murnaghan, F. D. "Finite deformations of an elastic solid." American Journal of Mathematics 59: 235-260. (1937).
    Nestola, F., T. B. Ballaran, et al. "High-pressure behavior of Ca/Na clinopyroxenes: The effect of divalent and trivalent 3d-transition elements." American Mineralogist 95(5-6): 832-838. (2010).
    Nestola, F., T. B. Ballaran, et al. "Compressional behaviour of CaNiSi2O6 clinopyroxene: bulk modulus systematic and cation type in clinopyroxenes." Physics and Chemistry of Minerals 32(3): 222-227. (2005).
    Nestola, F., T. Boffa Ballaran, et al. "High-pressure behaviour along the jadeite NaAlSi2O6–aegirine NaFeSi2O6 solid solution up to 10 GPa." Physics and Chemistry of Minerals 33(6): 417-425. (2006).
    Nestola, F., T. Boffa Ballaran, et al. "The effect of the hedenbergitic substitution on the compressibility of jadeite." American Mineralogist 93: 1005–1013. (2008).
    Nestola, F., M. Tribaudino, et al. "The crystal structure of pyroxenes along the jadeite hedenbergite and jadeite aegirine joins." American Mineralogist 92(8-9): 1492-1501. (2007).
    Nishihara, Y., E. Takahashi, et al. "Thermal equation of state of omphacite." American Mineralogist 88(1): 80-86. (2003).
    Pavese, A., R. Bocchio, et al. "In situ high temperature single crystal X-ray diffraction study of a natural omphacite." Mineral Mag 64(6): 983-993. (2000).
    Pavese, A., V. Diella, et al. "Synchrotron X-ray powder diffraction study of natural P2 /n-omphacites at high-pressure conditions." Physics and Chemistry of Minerals 28(1): 9-16. (2001).
    Poirier, J. P. Introduction to the Physics of the Earth's Interior. New York, Cambridge University Press. (2000).
    Poirier, J. P. and A. Tarantola "A logarithmic equation of state." Physics of The Earth and Planetary Interiors 109(1-2): 1-8. (1998).
    Putirka, K., M. Johnson, et al. "Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar." Contributions to Mineralogy and Petrology 123(1): 92-108. (1996).
    Rossi, G., D. C. Smith, et al. "Crystal-chemistry and cation ordering in the system diopside-jadeite: A detailed study by crystal structure refinement." Contributions to Mineralogy and Petrology 83(3): 247-258. (1983).
    Thompson, R. M. and R. T. Downs "The crystal structure of diopside at pressure to 10 GPa." American Mineralogist 93: 177-186. (2008).
    Tribaudino, M., M. Prencipe, et al. "High-pressure behaviour of Ca-rich C 2 / c clinopyroxenes along the join diopside-enstatite (CaMgSi2O6-Mg2Si2O6)." Physics and Chemistry of Minerals 27(9): 656-664. (2000).
    Uchida, T., Y. B. Wang, et al. "Yield strength and strain hardening of MgO up to 8 GPa measured in the deformation-DIA with monochromatic X-ray diffraction." Earth and Planetary Science Letters 226(1-2): 117-126. (2004).
    Vinet, P., J. Ferrante, et al. "A universal equation of state for solids." Journal of Physics C: Solid State Physics 19(20): L467. (1986).
    Vocadlo, L. and D. Dobson "The Earth's deep interior: advances in theory and experiment." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357(1763): 3335-3357. (1999).
    Weidner, D. J. Elastic properties of rocks and minerals. Geophysics : part A : Laboratory measurements. T. L. H. Charles G. Sammis, Academic Press. 24: 1-30. (1987).
    Yang, H. X. and C. T. Prewitt Chain and layer silicates at high temperatures and pressures. High-Temperature and High-Pressure Crystal Chemistry. Washington, Mineralogical Soc America. 41: 211-255. (2000).
    Zhang, R. Y., T. Hirajima, et al. "Petrology of Ultrahigh-Pressure Rocks From The Southern Su-Lu Region, Eastern China." Journal of Metamorphic Geology 13(6): 659-675. (1995).
    Zhang, L., H. Ahsbahs, et al. "Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa." American Mineralogist 82(3-4): 245-258. (1997).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE