研究生: |
吳乃聖 Wu, Nai-Sheng |
---|---|
論文名稱: |
基板轉移水熱法成長之類單晶氧化鋅薄膜及其於垂直結構紫外光檢測器之應用研究 Transfer of Hydrothermal Growth Quasi-monocrystalline ZnO Films for Vertical Ultraviolet Photodetectors |
指導教授: |
王水進
Wang, Shui-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 氧化鋅 、水熱法 、異質接面 、垂直結構 、紫外光檢測器 |
外文關鍵詞: | ZnO, HTG, heterojunction, vertical structure, UV-PD |
相關次數: | 點閱:75 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究主題係藉水熱法(hydrothermal growth, HTG)成長高品質之類單晶氧化鋅(Zinc oxide, ZnO)薄膜並進行垂直結構紫外光檢測器應用。利用本研究所開發n型類單晶ZnO薄膜與p型半導體材料氧化銅(Cuprous oxide, CuO)所得之異質p-n接面二極體,因具備寬能隙半導體材料之特性,極適合應用於紫外光感測器。為改善傳統水平式結構之ZnO紫外光感測器的缺點,如電流傳導路徑較長與嚴重之電流擁擠效應,本研究開發一種結合電鍍法製備金屬基板及超音波震盪機械式剝離之轉移基板技術,成功製備出垂直結構類單晶ZnO基紫外光檢測器。與現行紫外光感測器之製程相比,本研究方法具低溫製程(<100 oC)、大面積製作、成本低廉、製程步驟簡易等多項優勢,且相較於傳統水平結構之異質接面紫外光檢測器,本研究之垂直結構紫外光檢測器具極短之電流傳導路徑,除大幅降低串聯電阻與改善電流擁擠效應外,亦顯著提升元件於光能/電能轉換之效率。
本論文概分為三部份,第一部分為使用水熱法薄膜成長技術製備類單晶ZnO薄膜。於已濺鍍ZnO晶種層之藍寶石基板表面,進行ZnO薄膜之成長。材料分析與電性量測結果顯示,本研究所製備之ZnO薄膜具有單一晶格方向、高結晶性、高穿透率、高載子移動率及低電阻率之特性。
第二部份為基板轉移技術之開發。結合電鍍法製備金屬基板及超音波震盪機械式剝離技術,成功開發ZnO基板轉移技術。因水熱法製備之ZnO薄膜需使用較高成本之藍寶石基板,且此薄膜與晶種層之接面,具高缺陷密度與結構脆弱之問題,故本技術重點在於以金屬基板取代藍寶石基板,並透過超音波震盪施加應力於ZnO薄膜與晶種層之脆弱接面,除使ZnO薄膜與晶種層脫離外,可再藉蝕刻/研磨去除原晶種層上方具高密度缺陷之ZnO過度層,極有利於垂直結構光電元件之應用。
第三部分為以本論文所開發之基板轉移技術製備垂直結構ZnO/CuO異質接面紫外光感測器。與傳統水平結構之紫外光檢測器比較,因垂直式結構具較短之電流路徑,故展現出高整流比(JF/JR = 1.6×104, @±2 V)與較佳之光電特性(JUV/Jdark = 361)。此外,當元件經過高溫熱退火製程(氮氣環境下,退火500 oC)後,因元件缺陷之改善,可進一步將其光電響應(JUV/Jdark)大幅提升200%。
本研究以水熱法製備出具有高穿透率及良好結晶性之氧化鋅薄膜,結合電鍍與超音波震盪機械式剝離技術,製備出垂直結構n-ZnO/p-CuO異質接面紫外光檢測器,其優異的光能/電能轉換效率及快速響應速度,於紫外光檢測元件的發展將極具潛力。
Vertical ultraviolet photodetectors (UV-PDs) comprising of p-CuO and hydrothermally grown (HTG) n-ZnO heterojunction (HJ) through a simple substrate transfer process is demonstrated. The HJ were formed via radio frequency sputtering (RF) deposition of p-type CuO film onto the HTG ZnO film, which were subjected to thermal annealing in nitrogen ambient. An electroplated 60-m-thick nickel (Ni) layer was deposited onto the HJ-PD surface and the layer structure was removed from the original substrate through a sonicating bath process. The optoelectronic properties of vertical and lateral UV-PD under UV light (3 mW/cm2 at wavelength of 365 nm) are investigated and discussed. Owing to the much improved optoelectronic performances of the vertical structure allowing a relatively shorter current path and more uniform current distribution and without the adverse effect of seed layer encountered in conventional horizontal type device structure, a UV sensitivity (JUV/Jdark) as high as 687 has been obtained from the prepared vertical HTG-ZnO-based UV-PD.
[1] L. S. Vikas, K. C. Sanal, M. K. Jayaraj, et al., "Vertically aligned ZnO nanorod array/CuO heterojunction for UV detector application," physica status solidi (a), Vol. 211, pp. 2493-2498, 2014.
[2] Yung-Chun Tu, Shui-Jinn Wang, Tseng-Hsing Lin, et al., "Hydrothermal Growth of Quasi-Monocrystal ZnO Thin Films and Their Application in Ultraviolet Photodetectors," International Journal of Photoenergy., Vol. 2015, Article ID 261372, 2015.
[3] Mazhar Ali Abbasi, Zafar Hussain Ibupoto, Azam Khan, et al., "Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures," Materials Letters, Vol. 108, pp. 149-152, 2013.
[4] Lichun Zhang, Fengzhou Zhao, Caifeng Wang, et al., "Optoelectronic characteristics of UV photodetector based on GaN/ZnO nanorods p-i-n heterostructures," Electron Mater Lett, Vol. 11, pp. 682-686, 2015.
[5] Manisha Tyagi, Monika Tomar, Vinay Gupta, " Fabrication of an efficient GLAD-assisted p-NiO nanorod/n-ZnO thin film heterojunction UV photodiode," J. Mater. Chem. C, Vol. 2, pp. 2387-2393, 2014.
[6] Klaus Wilhelm, "Past and recent observations of the solar upper atmosphere at vacuum-ultraviolet wavelengths," Atmospheric and Solar-Terrestrial Physics, Vol. 65, pp. 167-189, 2003.
[7] Z.Q. Xu, H. Deng, J. Xie, Y. Li, X.T. Zu, et al., "Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol–gel method," Applied Surface Science, Vol. 253, pp. 476-479, 2008.
[8] L. Luo, Y.F. Zhang, S.S. Mao, L.W. Lin, et al., "Fabrication and characterization of ZnO nanowires based UV photodiodes," Sensors and Actuators A: Physical, Vol. 127, pp. 201-206, 2003.
[9] E. Monroy, F. Omnès, F. Calle, et al., "Wide-bandgap semiconductor ultraviolet photodetectors," Semiconductor Science and Technology, Vol. 18, pp. 399-401, 1998.
[10] Lutron Electronic Enterprise Co., Ltd., UV-340A, from http://www.lutron.com.tw/Default.asp
[11] Lutron Electronic Enterprise Co., Ltd., UVA-365, from http://www.lutron.com.tw/Default.asp
[12] Lutron Electronic Enterprise Co., Ltd., SP-82AL, from http://www.lutron.com.tw/Default.asp
[13] T&D Corporation, TR-74Ui, from http://www.tandd.com/
[14] Lutron Electronic Enterprise Co., Ltd., UVC-254SD, from http://www.lutron.com.tw/Default.asp
[15] Hong-chi Enterprise Co., Ltd, CHY-732, from http://horng-chi.com.tw/eng_index.asp
[16] Ratan Debnath, Ting Xie, Baomei Wen, Wei Li, Jong Y. Ha, et al., "A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector," RSC Advances, Vol. 5, pp. 14646-14652, 2015.
[17] Zhaona Wang, Ruomeng Yu, Xingfu Wang, et al., "Ultrafast Response p-Si/n-ZnO Heterojunction Ultraviolet Detector Based on Pyro-Phototronic Effect," Advanced Materials, Vol. 28, pp. 6880-6886, 2016.
[18] Naisen Yu, Dapeng Dong, Yan Qi, et al., "Ultraviolet Photoconductive Detectors Based on A-Plane ZnO Film Grow by Hydrothermal Method," Journal of Electronic Materials, Vol. 45, pp. 1073-1076, 2016.
[19] Aniruddh Bahadur Yadav, Amritanshu Pandey, Divya Somvanshi, et al., "Sol-Gel-Based Highly Sensitive Pd/n-ZnO Thin Film/n-Si Schottky Ultraviolet Photodiodes," IEEE Transactions on Electron Devices, Vol. 62, pp. 1879-1884, 2015.
[20] Gang Cheng, Xinghui Wu, Bing Liu, , et al., "ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed," Applied Physics Letters, Vol. 99, Article ID 203105, 2011.
[21] J. S. Liu, C. X. Shan, B. H. Li, et al., "High responsivity ultraviolet photodetector realized via a carrier-trapping process," Applied Physics Letters, Vol. 97, Article ID 251102, 2010.
[22] X. Wang, C. J. Summers, and Z. L. Wang, "Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays," Nano Lett, Vol. 4, pp.423-426, 2004.
[23] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im,"Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment," J. Phys. D: Appl. Phys., Vol.41, pp.1-5, 2008.
[24] Ting Guo, Yidong Luo, Yujun Zhang, et al., "Controllable Growth of ZnO Nanorod Arrays on NiO Nanowires and Their High UV Photoresponse Current," Cryst. Growth Des, Vol. 14, pp. 2329-2334, 2014.
[25] Wen Dai, Xinhua Pan, Shanshan Chen, et al., "Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance," J. Mater. Chem. C, Vol. 2, pp. 4606-4614, 2014.
[26] Po-Yu Yang, Jyh-Liang Wang, Wei-Chih Tsai, et al., "Effect of Oxygen Annealing on the Ultraviolet Photoresponse of p-NiO-Nanoflower/n-ZnO-Nanowire Heterostructures," Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 5737-5743, 2011.
[27] X.L. Zhang, K.S. Hui, K.N. Hui, et al., "High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering," Materials Research Bulletin, Vol. 48, pp. 305-309, 2012.
[28] Mazhar Ali Abbasi, Zafar Hussain Ibupoto, Azam Khan, et al., "Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures," Materials Letters, Vol. 108, pp. 149-152, 2013.
[29] S.I. Inamdar, K.Y. Rajpure, et al., "High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films," Journal of Alloys and Compounds, Vol. 595, pp. 55-59, 2014.
[30] S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, et al., "ZnO based visible–blind UV photodetector by spray pyrolysis," Superlattices and Microstructures., Vol. 76, pp. 253–263, 2014.
[31] Xuehui Gu, Min Zhang, Fanxu Meng, et al., "Influences of different interdigital spacing on the performance of UVphotodetectors based on ZnO nanofibers," Applied Surface Science., Vol. 307, pp. 20–23, 2014.
[32] Min Guo, Peng Diao, Xindong Wang, et al., "The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films," Journal of Solid State Chemistry., Vol. 178, pp. 3210–3215, 2005.
[33] Guangwu Yang, Baoli Wang, Wenyue Guo, et al., "Hydrothermal growth of low-density ZnO microrod arrays on nonseeded FTO substrates," Materials Letters., Vol. 90, pp. 34–36, 2013.
[34] S.J. Pearton, D.P. Norton, K. Ip, et al., "Recent progress in processing and properties of ZnO," Progress in Materials Science., Vol. 50, pp. 293–340, 2004.
[35] D. J. Leary, J. O. Barnes, A. G. Jordan, et al., "Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors," Journal of The Electrochemical Society., Vol. 129, pp. 1382–1386, 1982.
[36] G. Neumann, et al., "On the Defect Structure of Zinc-Doped Zinc Oxide," Physica Status Solidi (b)., Vol. 105, pp. 605–612, 1981.
[37] Jang-Yeon Kwon, Do-Joong Lee, Ki-Bum Kim, "Review Paper: Transparent Amorphous Oxide Semiconductor Thin Film Transistor," Electronic Materials Letters., Vol. 7, pp. 1–11, 2011.
[38] Yoon-Bong Hahn, et al., "Zinc oxide nanostructures and their applications," Korean Journal of Chemical Engineering., Vol. 28, pp. 1797–1813, 2011.
[39] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, et al., "ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition," Applied Physics Letters., Vol. 88, Article ID 173506, 2006.
[40] M Willander, O Nur, Q X Zhao, et al., "Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers," Nanotechnology., Vol. 20, Article ID 332001, 2009.
[41] Yung-Chun Tu, Shui-Jinn Wang, Guan-Yu Lin, et al., "Enhanced light output of vertical GaN-based LEDs with surface roughened by refractive-index-matched Si3N4/GaN nanowire arrays," Applied Physics Express., Vol. 7, Article ID 042101, 2014.
[42] P Nunes, E Fortunato, P Tonello, et al., "Effect of different dopant elements on the properties of ZnO thin films," Vacuum., Vol. 64, pp. 281-285, 2002.
[43] Moe Kevin, Wee Hong Tho, Ghim Wei Ho, et al., "Transferability of solution processed epitaxial Ga:ZnO films; tailored for gas sensor and transparent conducting oxide applications," Journal of Materials Chemistry., Vol. 22, pp. 16442-16447, 2012.
[44] Sukit Limpijumnong, S. B. Zhang, Su-Huai Wei, et al., "Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide," Physical Review Letters., Vol. 92, Article ID 155504, 2004.
[45] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al., "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, Vol. 4, pp. 42-46, 2004.
[46] R. S. Wagner, and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett., Vol. 5, Article ID 1753975, 1964.
[47] Y. Wu, and P. Yang, "Direct observation of vapor-liquid-solid nanowire growth," J. Am. Chem. Soc., Vol. 123, pp. 3165-3166, 2001.
[48] Jiaqiang Xu, Qingyi Pan, Yu'an Shun, et al., "Grain size control and gas sensing properties of ZnO gas sensor," Sensors and Actuators B: Chemical, Vol. 66, pp. 277-279, 2000.
[49] Jagpreet Singh, Gurjas Kaur, Mohit Rawat, et al., "A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications," Journal of Bioelectronics and Nanotechnology, Vol.1,pp.1-9, 2016.
[50] PVEducation, copper oxide, from http://www.pveducation.org/pvcdrom/materials/cuo
[51] M. Nawaz, E. Marstein, and A. Holt, "Design analysis of ZnO/cSi heterojunction solar cell," Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, pp. 002213-002218, 2010.
[52] R. L. Anderson., " Germanium-Gallium Arsenide Heterojunctions," IBM Journal of Research and Development, Vol.4, pp. 283-287, 1960.
[53] Royal Society of Chemistry, from http://www.rsc.org/suppdata/c5/cp/c5cp02041g/c5cp02041g1.pdf
[54] O. Katz, V. Garber, B. Meyler, et al., "Gain mechanism in GaN Schottky ultraviolet detectors," Appl. Phys. Lett., Vol. 79, Article ID 1394717, 2001.
[55] Jing Li, Suntao Wu, Junyong Kang, et al., "ZnO films deposited by RF magnetron sputtering," Semiconducting and Insulating Materials, 2004. SIMC-XIII-2004. 13th International Conference, 2014.
[56] A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye, A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, Vol. 38, pp.265-271, 2005.
[57] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, "High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition," Appl. Phys. Lett., Vol. 82, Article ID 1578694, 2003.
[58] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, "NiO/ZnO light emitting diodes by solution based growth," Appl. Phsy. Lett., Vol. 92, Article ID 113505, 2008.
[59] M. K. Lee, C. L. Ho, and C. H. Fan, "Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back," IEEE Photonics technology Letters, Vol. 20, pp. 1293-1295, 2008.
[60] K. Tsukuma, T. Akiyama , and Imai, "Liquid phase deposition film of tin oxide," J. Non-Cryst. Solid, Vol. 210, pp. 48-64, 1997.
[61] Y.X. Zhang, G.H. Li , Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, "Hydrothermal synthesis and photoluminescence of TiO2 nanowires," Chemical Physics Letters, Vol. 365, pp. 300-304, 2002.
[62] S. Li, H. Zhang, Y. Ji, D. Yang, "CuO nanodendrites synthesized by a novel hydrothermal route," Nanotechnology, Vol. 15, pp. 1428–1432, 2004.
[63] J. H. Kim, E.-M. Kim, D. Andeen, et al., "Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered Al2O3 (0001) Substrates by Low-Temperature Hydrothermal Synthesis at 90 °C," Advanced Functional Materials, Vol. 17, pp. 463–471, 2007.
[64] Lisheng Wang, Xiaozhong Zhang, et al., "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives," Applied Physics Letters., Vol. 86, Article ID 024108, 2004.
[65] Guangyao Zhu, Shulin Gu, Shunming Zhu, et al., "Optimization study of metal-organic chemical vapor deposition of ZnO on sapphire substrate," Journal of Crystal Growth, Vol. 349, pp. 6-11, 2012.
[66] Changzheng Wang, Zhong Chen, Haiquan Hu, et al., "Effect of the oxygen pressure on the microstructure and optical properties of ZnO films prepared by laser molecular beam epitaxy," Physica B: Condensed Matter, Vol. 404, pp. 4075-4082, 2009.
[67] E. Guziewicz, I. A. Kowalik, M. Godlewski, et al., "Extremely low temperature growth of ZnO by atomic layer deposition," Journal of Applied Physics, Vol. 103, Article ID 033515, 2007.
[68] L. Spanhel and M. A. Anderson, "Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids," J. Am. Chem. Soc., Vol. 113(8), pp. 2826-2833, 1991.
[69] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," J. Phys. Chem. B., Vol. 105(17), pp. 3350-3352, 2001.
[70] L. Vayssieres, N. Beermann, S. E. Lindquist, and A. Hagfeldt, "Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides," Chemistry of Materials., Vol. 13, no. 2, pp. 233-235, 2001.
[71] L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO form aqueous solution," Adv. Mater., Vol. 15, no. 5, pp. 464-466, 2003.
[72] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, "Biomimetic arrays of oriented helical ZnO nanorods and columns," J. Am. Chem. Soc., Vol. 124(44), pp. 12954-12955, 2002.
[73] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, "Low-temperature wafer-scale production of ZnO nanowire arrays," Angew. Chem., Vol. 115, pp. 3031-3034, 2003.
[74] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solution," Chem. Mater., Vol. 17, pp. 1001-1006, 2005.
[75] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, "Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution," J. Mater. Chem., Vol. 14, pp. 2575-2591, 2004.
[76] Y.G. Chen, M. Ogura, S. Yamasaki, and H. Okushi, "Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model," Diamond & Related Materials, Vol. 13, pp. 2121-2424, 2004.
[77] R. W. Nosker and P. Mark, "Polar surfaces of wurtzite and zincblende lattices", Surf. Sci., Vol. 19, pp. 291-317, 1970.
[78] Hong Seong Kang, Jeong Seok Kang, Seong Sik Pang, et al., "Variation of light emitting properties of ZnO thin films depending on post-annealing temperature," Materials Science and Engineering: B, Vol. 102, pp. 313-316, 2003.
[79] Le Hong Quang, Soo Jin Chua, Kian Ping Loh, et al., "The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis," Journal of Crystal Growth, Vol. 287, pp. 157-161, 2006.
[80] Y. N. Hou, Z. X. Mei, H. L. Liang, et al., " Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures," Applied Physics Letters, Vol. 98, Article ID 263501, 2011.