簡易檢索 / 詳目顯示

研究生: 戴源宏
Tai, Yuan-Hung
論文名稱: GPU版壓力基底的晶格波茲曼法模擬流體-顆粒交互作用之問題
GPU Version Pressure-Based Lattice Boltzmann Method for Fluid-Particle Interaction Problems
指導教授: 林三益
Lin, San-Yih
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 139
中文關鍵詞: 晶格波茲曼法沉浸邊界法不可壓縮流流體化有效應力砂湧繪圖處理器平行運算彈性碰撞體積比函數
外文關鍵詞: Lattice Boltzmann, Immersed Boundary, Direct forcing, Particulate Flow, Fluid-Particle, Sedimentation, Fluidized bed, Fluidization, GPU, Parallel Computing, CUDA, Elastic Collision
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的是使用以壓力為基底的晶格波茲曼法(Pressure-based Lattice Boltzmann Method, LBM),代替那維爾史托克方程式(Navier-Stokes Equation),去求解不可壓縮黏性流場。探討多顆球體在黏性流體中的三維運動模擬。以彈性碰撞模型處理顆粒之間接觸行為,以沉浸邊界法(Immersed Boundary Method,IBM)處理複雜邊界的問題,再求解固體和液體之間交互作用的行為。在沉浸邊界法中,使用體積比函數(volume fraction function)去描述固體邊界。以單顆/兩顆/多顆球體去模擬顆粒在黏性流體中發生的現象,包含牽引、輕微接觸、翻滾(drafting、kissing、tumbling)的行為,以及多顆沉積時的瑞利-泰勒不穩定現象(Rayleigh-Taylor instability)。接下來以多顆球體以不同尺寸、密度及數目,模擬顆粒流體化及所需要的壓力差或入口速度大小,探討其中因壓差導致顆粒間有效應力消失而產生流體化的現象,採用有效應力的觀念,決定湧砂現象所需的壓力差。計算結果與理論值比較不論尺寸、密度、顆粒數目都有一致性的結果,顆粒層數較多時,二維的效應減小,和理論值越接近,密度較大的結果也較佳。程式本身再結合具有大量運算效能的GPU繪圖處理器(Graphics Processing Units)的平行運算,以不同的技巧來加速迴圈的運算速度。以大量的執行緒並利用GPU晶片內大量的核心,加上多維降為一維矩陣的排列方式,以獲得較高的計算效率去處理較大的網格及顆粒數目。相較傳統單一核心的CPU,至少有十倍至幾十倍的計算速度,可節省大量的計算時間,與平行電腦相比所需要的資源較少。

    Two major topics of fluid-particle interaction problems are investigated here. First one is about sedimentation problems and second one is about fluidization problems. In settling problems, single particle, two particles, and 1260 particles are demonstrated to investigate phenomena. In fluidization area, one particle is validated. Then 400(20x20) particles are applied with hydraulic gradient with different sizes and densities. After this, 500(5x5x20) particles are also represented with different density. The major goal is to determine how large the pressure gradient to fluidized the particles when comparing with theoretical value.
    A direct-forcing IB-LBM is introduced to solve the problems. The IB method enforces the fluid velocity equal to the particle velocity. An elastic spring model is applied to compute the interaction forces due to particle-particle or particle-wall collision. Many pressure-based schemes are excellent in low-speed incompressible flow and the problems in thesis are in this area. Thus, pressure-based LBM is implemented with higher order in accuracy. On the other hand, the density-based schemes are good to handle the high-speed and compressible flows. Due to the massive computation is required; a GPU-version program is used to accelerate the computing speed.
    First, sedimentation of one particle is performed with experiments. Then two particle with drafting-kissing tumbling phenomenon is observed and the Rayleigh-Taylor instability can be seen in 1260 particles. The fluidization velocity of a single particle is performed well with experimental data and fluidization speed is also explained with several equations. Then, fluidization of many particles (20x20) in a narrow enclosure is simulated. The normalized effective stress is defined to check if the fluidization occurs with an applied average hydraulic pressure. The higher pressure is required to fluidize the particles with the wall effects. When 500(5x5x20) even 2000(10x10x20) particles are applied, the difference between average hydraulic gradient and theoretical one is much closer. If the particles sample number is enough, the result is very good. It speeds up from 10 to 70 times than a traditional LBM does with GPU parallelization and it will save much time to solve a big problem.

    ABSTRACT IN CHINESE i ABSTRACT x CONTENTS v LIST OF TABLES xiv LIST OF FIGURES xv NOMENCLATURE xix CHAPTER Ⅰ INTRODUCTION 1 1.1 Fluid-Particle interaction 1 1.1.1 Sedimentation 3 1.1.2 Fluidization 4 1.2 Navier-Stokes solver 4 1.3 Overview of Lattice Boltzmann method 5 1.3.1 Introduction of Boltzmann equation 5 1.3.2 From Lattice Gas Automata to Lattice Boltzmann Method 7 1.4 Moving Grid Technique 9 1.5 Fixed Grid Technique-IB method 10 1.5.1 Other methods 12 1.6 GPU implementation 13 1.7 Proposed numerical method 13 1.8 Physical problem 14 CHAPTER ⅡGOVERNING EQUATIONS AND NUMERICAL FORMULATION 15 2.1 Pressure-based Lattice Boltzmann method (LBM) 15 2.2 Direct-forcing immersed boundary method 18 2.3 Three-dimensional implementation 22 2.4 Dimensionless Analysis 26 CHAPTER III PARALLEL COMPUTING ON GPU 30 3.1 GPU hardware device 31 3.2 GPU programming settings 36 3.3 Programming model and block-thread 37 3.4 Memory management 41 3.5 Optimization for kernel functions 45 3.6 Parallelized the summation problem 47 CHAPTER IV NUMERICAL TESTS 50 4.1 Two-dimensional channel flow 50 4.2 Boundary layer flow over a flat plate 55 4.3 Flow above an oscillating infinite plate 58 4.4 Flow over a spherical particle 60 CHAPTER V SEDIMENTAION OF LARGE NUMBERS OF SPHERICAL PARTICLES IN A NARROW BOX 67 5.1 Sedimentation of the particle in a viscous fluid within a box 67 5.2 Sedimentation of two particles in a viscous fluid in a narrow box 71 5.3 Sedimentation of 1260 particles with no-slip wall boundary conditions 78 CHAPTER VI FLUIDIZATION OF LARGE NUMBERS OF SPHERICAL PARTICLES 86 6.1 Fluidization of a single particle with velocity inflow 87 6.2 Total pressure, pore pressure, and effective stress in fluidization 90 6.3 Comparisons of different parameters in fluidization with 400 particles within a box 95 6.4 Different densities, sizes, and numbers of the particles in fluidization 103 6.5 Speedup tests of GPU with many particles 112 CHAPTER VII CONCLUSIONS AND FUTURE WORK 121 7.1 Conclusions and future work 121 REFERENCES 123 APPENDIX 137

    [1] Abe, T. (1997), “Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation”, Journal of Computational Physics, Vol. 131, pp. 241-246.
    [2] Aidun, C. K., Lu, Y. (1995), “Lattice Boltzmann simulation of solid particles suspended in fluid”, Journal of Statistical Physics, Vol. 81, pp. 49-61.
    [3] Andrew Schofield, Peter Wroth (1968), "Critical State Soil Mechanics", Lectures in Engineering at Cambridge University.
    [4] Bai, D., Issangya, A. S., Grace, J. R. (1999), "Characteristics of gas-fluidized beds in different flow regimes", Ind. Eng. Chem. Res, Vol. 38, pp. 803-811.
    [5] Batina, J. T. (1990), “Unsteady Euler airfoil solutions using unstructured dynamic meshes”, AIAA Journal, Vol. 28, No. 8, pp. 1381-1388.
    [6] Behrend, Q. (1995), “Solid-fluid boundaries in particle suspension simulation via the lattice Boltzmann method”, Physical Review E, Vol. 52, pp. 1164-1175.
    [7] Benek, J. A., Buning, P. G., Steger, J. L. (1985), “A 3-D chimera grid embedding technique”, AIAA paper 85-1523.
    [8] Bhatnagar, P. L., Gross, E. P., Krook, M. (1954), “A model for collision process in gases. I.: Small amplitude processes in charged and neutral one-component systems”, Physic Review. 94, pp. 511-525.
    [9] Bouzidi, M., d’Humieres, D., Lallemand, P., Luo, L. S. (2001), “Lattice Boltzmann equation on a two-dimensional rectangular grid”, Journal of Computational Physics, Vol. 172, pp. 704-717.
    [10] Brace, W. F., Kohlstedt, D. L. (1980), "Limits on lithospheric stress imposed by laboratory experiment", Journal of Geophysical research, Vol. 85, No. B11, pp. 6248-6252.
    [11] Buckholtz, V., Pöschel, T. (1997), "Force distribution and comminution in ball mills", Friction, Arching, Contact Dynamics, World Scientific, pp. 265-273.
    [12] Buick, J. M. (1997), “Lattice Boltzmann method in interfacial wave modeling”, Ph.D. Thesis of the University of Edinburgh, U.K.
    [13] Chen, H., Chen, S., Matthaeus, W. H., “Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method,” Physical review A, Vol. 45, No. 8, 1991.
    [14] Chen, S., Doolen, G. D. (1998), "Lattice Boltzmann method for fluid flows," Annu Review Fluid Mech. Vol. 30, pp. 329-364.
    [15] Chen, S., Martínez, D., Mei, R. (1996), " On boundary conditions in lattice Boltzmann methods", Phys. Fluids, Vol. 8, pp. 2527-2536.
    [16] Crank, J. (1975), "The Mathematics of Diffusion. 2nd Edition", Oxford, pp. 143.
    [17] Currie, I. J. (1974), "Fundamental Mechanics of Fluids", McGraw-Hill, ISBN 0-07-015000-1.
    [18] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M. H., Vahi, K., Livny, M. (2004), “Pegasus: Mapping scientific workflows onto the grid”, M. Dikaiakos (Ed.): AxGrids 2004, LNCS 3165, pp. 11–20.
    [19] Derksen, J. J., Sundaresan, S. (2007), "Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds", Journal of Fluid Mechanics, Vol. 587, pp. 303-336.
    [20] Dimitri Gidaspow (1994), "Multiphase flow and fluidization Continuum and kinetic theory descriptions", Elsevier's Science and Technology Rights Department in Oxford UK,ISBN 0-12-282470-9.
    [21] Ding, J., Gidaspow, D. (1990), “A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow”, AIChE Journal, Vol.36, No. 4, pp. 523-538.
    [22] Duru, P., Nicolas, M., Hinch, J., Guazzelli, É. (2002), "Constitutive laws in liquid-fluidized beds", Journal of Fluid Mechanics, Vol 452, pp. 371-404.
    [23] Dusenbery, David B. (2009). "Living at Micro Scale", Chapter 12. Harvard University Press, Cambridge, Mass. ISBN 978-0-674-03116-6.
    [24] Eymard, R., Gallouët, T., Herbin, R. (2006), "Finite volume methods", which appeared in Handbook of Numerical Analysis, P.G. Ciarlet, J.L. Lions eds, vol 7, pp. 713-1020.
    [25] Fadlun, E., Verizicco, R., Orlandi, P., Mohd-Yusof, J. (2000), “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations”, Journal of Computational Physics, Vol. 161, pp. 35-60.
    [26] Feng, Y., Yu, A. (2009), “CFD-DEM modeling of gas fluidization of particle mixtures with size and density differences”, 7th international conference on CFD in the minerals and process industries.
    [27] Feng, Y. Q., Xu, B. H., Zhang, S. J., Yu, A. B. (2004), “Discrete particle simulation of gas fluidization of particle mixtures”, American Institute of Chemical Engineers, Vol. 50, pp. 1713-1728.
    [28] Feng, Z. G., Michaelides, E. E. (2005), “Proteus: a direct forcing method in the simulations of particulate flows,” Journal of Computational Physics, Vol. 202, pp. 20-51.
    [29] Feng, Z.G., Michaelides, E. E., Mao, S. (2010), “A three-dimensional resolved discrete particle method for studying particle-wall collision in a viscous fluid”, Journal of Fluid Engineering, Vol. 132, 091302.
    [30] Feng, Z.G., Michaelides, E. E., (2004), “The immersed boundary lattice-Boltzmann method for solving fluid-particles interaction problems,” Journal of Computational Physics, Vol. 195, pp. 602-628.
    [31] Formberg, B. (1988), “Steady viscous flow past a sphere at high Reynolds numbers, Journal of Fluid Mechanics”, Vol. 190, pp. 471-489.
    [32] Forsyth, A. R. (1960), "Calculus of Variations", New York: Dover, pp. 17-20 and 29.
    [33] Kuznik. F., Obrecht. C., Rusaouen. G., Roux. J. J. (2010), "LBM based flow simulation using GPU computing processor", Computers and Mathematics with Applications, Vol. 59, pp. 2380-2392.
    [34] Glowinski, R., Pan, T. -W., Hesla, T. I., Joseph, D. D. (1999), “A distributed lagrange multiplier/fictitious domain method for particulate flows,” International Journal of Multiphase Flow, Vol. 25, pp. 755-794.
    [35] Glowinski, R., Pan, T. -W., Hesla, T. I., Joseph, D. D., Périaux, J. (2001), “A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow”, Journal of Computational Physics, Vol. 169. pp. 363-426.
    [36] He, X., Luo, L. S. (1997), “A priori derivation of the lattice Boltzmann equation”, Physics Review E, Vol. 55, R6333-R6336.
    [37] He, X., Luo, L. S., “Lattice Boltzmann model for the incompressible Navier-Stokes equation,” Journal of Statistical Physics, Vol. 88, Nos. 3/4, 1997.
    [38] He, X., Zou, Q., Luo, L. S., Dembo, M. (1996), “Some progress in the lattice Boltzmann method, Part 1, non-uinform mesh grids”, Journal of Computational Physics, Vol. 129, pp. 357-363.
    [39] Heinrich, J. C., Pepper, D. W. (1999), "Intermediate finite element method Fluid flow and heat transfer applications", London, UK, ISBN 1-56032-309-4.
    [40] Hersey, J. A. (1975), "Ordered mixing: A new concept in powder mixing practice", Powder Technology, Vol. 11, pp. 41-44.
    [41] Higuera, F. J., Jimènez, J. (1989), “Boltzmann approach to lattice gas simulation”, EuroPhysics Letter, Vol. 9, pp. 663-668.
    [42] Higuera, F. J., Succi, S., Benzi, R. (1989), “Lattice gas dynamics with enhanced collisions”, EuroPhysics Letter, Vol. 9, pp. 345-349.
    [43] Hirt, C. W., Nichols, B. D. (1981), “Volume of fluid (VOF) method for dynamics of free boundaries”, Journal of Computational Physics, Vol. 39, pp. 201-225.
    [44] Huntley, J. M. (1998),” Fluidization, Segregation and Stress Propagation in Granular Materials”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 356,No. 1747, Mechanics of Granular Materials in Engineering and Earth Sciences (Nov. 15, 1998),pp. 2569-2590.
    [45] Issa, R. I. (1985), “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting”, Journal of Computational Physics, Vol. 62, pp. 40-65.
    [46] Johnson, T. A., Patel, V. C. (1999), “flow past a sphere up to a Reynolds number of 300”, Journal of Fluid Mechanics, Vol. 378, pp. 19-70.
    [47] Kayabali, K. (1996), "Soil liquefaction evaluation using shear wave velocity", Engineering Geology, Vol. 44, pp. 121-127.
    [48] Kuwagi, K., Utsunomiya, H., Shimoyama, Y., Hirano, H., Takami, T. (2010), "Direct numerical simulation of fluidized bed with immersed boundary method", 2010 ECI Conference on The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering, Vol. RP6, Article 94.
    [49] Ladd, A. J. C. (1944), “Numerical simulation of particular suspensions via a discretized Boltzmann equation, Part 1”, Theoretical foundation, Journal of Fluid Mechanics, Vol. 271, pp. 285-309.
    [50] Ladd, A. J. C. (1944), “Numerical simulation of particular suspensions via a discretized Boltzmann equation, Part 2”, Numerical results, Journal of Fluid Mechanics, Vol. 271, pp. 311-339.
    [51] Lai, M. C., Peskin, C. S. (2000), "An immersed boundary method with formal second-order accuracy and reduced numerical viscosity", Vol. 160, pp. 705-719.
    [52] Lallemand, P., Luo, L. S. (2000), “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability”, Physical Review E, Vol. 61, pp. 6546-6562.
    [53] Lee, C. (2003), “Stability characteristicd of the virtual boundary method in three-dimensional applications”, Journal of Computational Physics, Vol. 184, pp. 559-591.
    [54] Lee, J. S., Santamarina, J. C. (2007), "Seismic monitoring short-duration events: liquefaction in 1g models", Can. Geotech. J, Vol. 44, pp. 659-672.
    [55] Li, W., Wei, X., and Kaufman, A. (2003), “Implementing lattice Boltzmann computation on graphics hardware”, Vis. Comput., Vol. 19, No. 7-8, pp. 444-456.
    [56] Lin, S. Y., Lin, C. T., Chin, Y. H., Tai, Y. H. (2011),"A direct-forcing pressure based lattice Boltzmann method for solving fluid-particle interaction problems," International Journal for Numerical Methods in Fluids, Vol. 66, pp. 648-670.
    [57] Liu, X., Qin, N., Xia, H. (2006), “Fast dynamic grid deformation based on Delaunay graph mapping”, Journal of Computational Physics, Vol. 211, pp. 405-423.
    [58] Liyanathirana, D. S., Poulos, H. G. (2002), "Numerical simulation of soil liquefaction due to earthquake loading", Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 511-523.
    [59] Marshall, J. S. (2009), “Discrete-element modeling of particulate aerosol flows”, Journal of Computational Physics, Vol. 228, pp. 1541-1561.
    [60] Mansouri, M., Delenne, J.-Y., El Youssourfi, M. S., Seridi, A., (2009), “A 3D DEM-LBM approach for assessment of the quick condition for sands,” C.R. Mecanique, Vol. 337, pp. 675-681.
    [61] Marella, S., Krishman, S., Liu, H., Hdaykumar, H. S. (2005), “Sharp interface cartesian grid method I: an easily implemented technique for 3D moving boundary computations”, Journal of Computational Physics, Vol. 210, pp. 1-31.
    [62] Martin, R. G., Ames, B. N. (1960), "A method for determining sedimentation behavior of enzymys: Application to protein mixtures", The Journal of Biological Chemistry, Vol. 236, pp. 1372-1379.
    [63] McNamara, G. R., Zanetti, G. (1988), “Use of the Boltzmann equation to simulate lattice-gas automata”, Physics Review Letter, Vol. 61, pp. 2332-2335.
    [64] Mei, R., Luo, L. S., Shyy, W. (1999), “An accurate curved boundary treatment in the lattice Boltzmann method”, Journal of Computational Physics, Vol.155, pp. 307-330.
    [65] Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/.
    [66] NVIDIA CUDA™ Programming Guide http://www.nvidia.com/object/cuda_develop.html.
    [67] Obrecht. C., Kuznik. F., Tourancheau. B., Roux. J. J. (2011), "Multi-GPU implementation of the Lattice Boltzmann Method", Computers and Mathematics with Applications, article in press.
    [68] Osher, S. (1984), “Convergence of generalized MUSCL schemes”, SIAM Journal of Numerical Analysis, Vol. 22, pp. 947-961.
    [69] Osher, S., Chakravarthy, S. (1984), “Very high order accurate TVD schemes”, ICASE Report, No. 84-44.
    [70] Owen, J. P., Ryu, W. S. (2005), “The effects of linear and quadratic drag on falling spheres: an undergraduate laboratory”, European Journal of Physics, Vol. 26, pp. 1085-1091.
    [71] Pan, T. W., Joseph, D. D., Bai, R., Glowinski, R., Sarin, V. (2002), “Fluidization of 1204 spheres: simulation and experiment”, Journal of Fluid Mechanics, Vol. 451, pp. 169-191.
    [72] Parallel Virtual Machine http://www.csm.ornl.gov/pvm/.
    [73] Peskin, C. S. (2002), "The immersed boundary method," Acta Numerica, Vol. 11, pp. 479-517.
    [74] Peskin, C. S. (1997), “Numerical analysis of blood flow in the heart”, Journal of Computational Physics, Vol. 25, pp. 220-252.
    [75] Peskin, C. S., MacQueen, D. M. (1989), "A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluids," Journal of Computational Physics, Vol. 81, pp. 372-405.
    [76] Rhodes, M. (2001), “Fluidization of particles by fluids”, Educ. Reso. for Part Techn. 012Q-Rhodes, http://aicheptf.org/ .
    [77] Richefeu, V., Radjai, F., El Youssoufi, M. S. (2006), "Stress transmission in wet granular materials", European Physical Journal E, Vol. 21, pp. 359–369.
    [78] Shu, C., Liu, N., Chew, Y. T., (2007), “A novel immersed boundary velocity correction lattice-Boltzmann method and its application to simulate flow past a circular cylinder,” Vol. 226, pp. 1607-1622.
    [79] Shyy, W., Thakur, S. S., Ouyang, H., Liu, J., Blosch, E. (1999), “Computational Techniques for Complex Transport Phenomena”, Cambridge University Press, New York.
    [80] Steger, J. L., Benek, J. A. (1987), “On the use of composite grid schemes in computational aerodynamics”, Computer Methods in Applied Mechanics and Engineering, Vol. 64 pp. 301-320.
    [81] Sterling, J. D., Chen, S. (1996), “Stability analysis of lattice Boltzmann methods”, Journal of Computational Physics, Vol. 123, pp. 196-206.
    [82] Takahama, N., Otsuka, T., Brahmantyo, B. (2000), "A new phenomenon in ancient liquefaction-- the draw-in process, its final stage", Sedimentary Geology, Vol. 135, pp. 157-165.
    [83] Takahashi, T. (1981), "Debris flow", Ann. Rev. Fluid Mech. Vol. 13, pp. 57-77.
    [84] Tatemoto, Y., Mawatari, Y., Yasukawa, T., Noda, K. (2004), “Numerical simulation of particle motion in vibrated fuidized bed”, Chemical Engineering Science, Vol. 59, pp. 437-447.
    [85] Ten Cate, A., Nieuwstad, C.H., Derksen, J.J., Van den Akker, H.E.A. (2002), “Particle imaging velocimetry experiments and lattice Boltzmann simulations on a single sphere settling under gravity”, Physics Fluids, Vol. 14, 4012-4025.
    [86] The Message Passing Interface (MPI) http://www.mcs.anl.gov/research/projects/mpi/
    [87] Tölke, J., Krafczyk, M., “TeraFLOP computing on a desktop PC with GPUs for 3D CFD”, International Journal of Computational Fluid Dynamics, Vol. 22, No. 7, August 2008, 443–456.
    [88] Tomov, S., McGuigan, M., Bennett, R., Smith, G., and Spiletic, J. (2005), “Benchmarking and implementation of probability-based simulations on programmable graphics cards”, Comput. Graph, Vol. 29, pp. 71-80.
    [89] Tseng, Y. H., Ferziger, J. H. (2003), “A ghost-cell immersed boundary method for flow in complex geometry”, Journal of Computational Physics, Vol. 192, pp. 593-623.
    [90] Ueng, T. S., Wang, M. H., Chen, M. H., Chen, C. H., Peng, L. H. (2006), "A large biaxial shear box for shaking table test on saturated sand", Geotechnical Testing Journal, Vol. 29, No. 1.
    [91] Uhlmann, M. (2005), “An immersed boundary method with direct forcing for the simulation of particulate flows”, Journal of Computational Physics, Vol. 209, pp. 448-476.
    [92] Van der Vegt, J. J. W., Van der Ven, H. (2002), “Space–Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible Flows I. General Formulation”, Journal of Computational Physics, Vol. 182, pp. 546-585.
    [93] Van Leer, Bram. (1974), “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a second order scheme”, Journal of Computational Physics, Vol. 135, 229–248.
    [94] Van Leer, Bram. (1997), “Towards the Ultimate Conservative Difference Scheme”, Journal of Computational Physics, Vol. 14, 361–370.
    [95] Voller, V. R. (1987), "A fixed grid numerical modeling methodology for convection-diffusion mushy region phase change problems", International Journal Heat Mass Transfer, Vol. 30, No. 8, pp. 1709-1719.
    [96] Wachmann, B., Kalthoff, W., Schwarzer, S., Herrmann, H. J. (1998), “Collective drag and sedimentation: comparison of simulation and experiment in two and three dimensions”, Granular matter, Vol. 1, pp. 75-82.
    [97] Wang Peng, Abel Tom, Kaehler Ralf (2010), “Adaptive mesh fluid simulation on GPU”, New Astronomy, Vol. 15, pp. 581-589.
    [98] Wang, Z. J. (1995), “A fully conservative interface algorithm for overlapped grids”, Journal of Computational Physics, Vol. 122, pp. 96-106.
    [99] Wang, Z. J., Parthasarathy, V. (2000), "A fully automated chimera methodology for multiple moving body problems", International Journal for Numerical Methods in Fluids, Vol. 33, pp. 919-938.
    [100] White, F. M. (1991), “Viscous Fluid Flow”, McGraw-Hill, ISBN 0-07-100995-7.
    [101] William, H. B., David, G. C., Luggi, C., Paul Millar, A., Kurt, S., Floriano, Z. (2002), “Simulation of Dynamic Grid Replication Strategies in OptorSim”, M. Parashar (Ed.): GRID 2002, LNCS 2536, pp. 46–57.
    [102] Wu, J., Shu, C. (2010), “Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme”, Commun. Comput. Phys, Vol. 7, No. 4, pp. 793-812.
    [103] Wolf-Gladrow, D. A. (2000), “Lattice gas cellular automata and lattice Boltzmann models, An introduction”, Springer-Verlag Berlin Heidelberg.
    [104] Ye, M., Van der Hoef, M. A., Kuipers, J.A.M. (2004), “A numerical study of fluidization behavior of Geldart A particles using a discrete particle model”, Powder Technology, Vol. 139, pp. 129-139.
    [105] Yu, D. (2002), “Viscous flow computations with the lattice Boltzmann equation method”, Ph.D. thesis, University of Florida.
    [106] Yuu, S., Umekage, T., Johno, Y. (2000), “Numerical simulation of air and particle motions in bubbling fluidized bed of small particles”, Powder Technology, Vol. 110, pp. 158-168.
    [107] Zeghal, M., El Shamy, U. (2008), "Liquefaction of saturated loose and cemented granular soils", Powder Technology, Vol. 184, pp. 254-265.
    [108] Zhang Quan, Prosperetti Andrea, (2010), “Physics-based analysis of the hydrodynamic stress in a fluid-particle system,” PHYSICS OF FLUIDS 22, 033306.
    [109] Zhang, Z., Prosperetti, A. (2003), “A method for particle simulation”, Journal of Applied Mechanics, Vol. 70, pp. 64-74.

    下載圖示 校內:2013-08-21公開
    校外:2013-08-21公開
    QR CODE