簡易檢索 / 詳目顯示

研究生: 温翊淳
Wen, Yi-Chun
論文名稱: 運載火箭的姿態控制與入軌導引
Attitude Control and Orbital Insertion Guidance of Launch Vehicles
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 97
中文關鍵詞: 運載火箭重力轉彎姿態控制推力向量控制火箭非線性模型
外文關鍵詞: Launch vehicle, gravity turn, attitude control, thrust vector control, nonlinear model
相關次數: 點閱:53下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運載火箭在發射時,通常以垂直或接近垂直的角度起飛,為了能順利入軌,火箭不僅需要達到特定的高度和速度,還需在適當階段進行轉彎操作,確保飛行路徑角與俯仰角的差值趨近於零,這一轉彎過程主要依賴推力向量控制系統實現。在穿越大氣層階段,由於動態壓力較高,轉彎時若產生過大的側向力矩,可能導致火箭結構受損甚至斷裂,因此,火箭在大氣層初期階段通常採用重力轉彎方式,以保持速度方向與機身方向一致,從而減少結構應力降低阻力並提高燃料利用效率。本論文深入探討了重力轉彎控制系統的設計方法,火箭運動具有顯著的時變性與非線性特徵,基於火箭運動方程設計控制系統的方式較為嚴謹。本文設計了以推力向量為致動方式的非線性模型,在火箭進入重力轉彎階段之前,首先需要透過姿態控制系統精確調整俯仰角度,以實現飛行路徑的順利。此外,本文通過剛體質心運動與剛體運動比較模擬案例,以及控制器參數對剛體運動的影響,模擬結果顯示,所提出的控制系統設計方法能夠有效控制火箭姿態,並實現姿態追蹤重力轉彎軌跡的目標。這些研究結果不僅在提升運載火箭性能和任務成功率方面具有重要意義,還為未來航太任務的設計與優化提供了堅實的理論基礎。

    Launch vehicles typically take off vertically or near-vertically. To achieve orbit, rockets must reach specific altitude and velocity while executing a turning maneuver to align the flight path angle with the pitch angle. This process relies on thrust vector control (TVC). During the atmospheric phase, high dynamic pressure can cause excessive lateral torque, risking structuraldamage.Therefore, rockets often adopt a gravity turn maneuver to align velocity with the body axis, reducing stress, drag, and improving fuel efficiency.
    This paper explores the design of a gravity turn control system. Given the nonlinear, time-varying characteristics of rocket motion, a nonlinear model using TVC is proposed. Before entering the gravity turn phase, precise pitch angle adjustments are made via the attitude control system to ensure a smooth trajectory. Simulations of rigid body dynamics and controller parameter effects show the proposed system effectively controls attitude and tracks the gravity turn trajectory.
    These results enhance launch vehicle performance and success rates, providing a foundation for future aerospace mission design.

    摘要 III Attitude Control and Orbital Insertion Guidance of Launch Vehicles IV 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號表 XVI 第1章 緒論 1 1.1 背景與文獻回顧 1 1.2 研究動機 2 1.3 論文組織架構 3 第2章 火箭動力學與氣動模型 4 2.1 座標定義 4 2.1.1 慣性座標(SXIYIZI) 4 2.1.2 行星固定座標(SXYZ) 5 2.1.3 當地水平座標(oxyz) 7 2.1.4 風軸座標(oxvyvzv) 8 2.1.5 體座標(oxbybzb) 9 2.2 座標轉換 10 2.2.1 體座標與當地水平座標轉換 10 2.2.2 當地水平座標與慣性座標轉換 11 2.2.3 體座標與慣性座標轉換 11 2.2.4 慣性座標與行星固定座標轉換 12 2.2.5 風軸座標與體座標轉換 12 2.2.6 風軸座標與當地水平座標轉換 12 2.3 火箭運動方程式 14 2.3.1 運動學方程式 14 2.3.2 動力學方程式 15 2.3.3 火箭姿態方程式 20 2.3.4 尤拉方程式[16] 22 2.3.5 四元素方程式 23 2.4 大氣作用力模型 24 2.4.1 氣動力模型 24 2.4.2 阻力係數 27 第3章 重力轉彎與入軌導引設計 29 3.1 火箭各項參數 29 3.1.1 火箭外型介紹 29 3.1.2 火箭推力 30 3.2 推力向量控制系統(TVC) 32 3.2.1 推力向量 32 3.2.2 致動器設計 34 3.3 重力轉彎 34 3.3.1 重力轉彎方程式 35 3.3.2 重力轉彎軌跡 36 3.4 火箭的入軌導引 38 3.5 模擬參數介紹 38 3.6 模擬參數設定與質心入軌 41 第4章 火箭姿態控制 49 4.1 姿態控制概述 49 4.2 控制器設計 50 4.3 姿態運動與質心運動的整合 53 第5章 模擬結果與討論 59 5.1 質心運動與剛體運動模擬結果對比 59 5.2 控制器參數改變對剛體模擬結果影響 64 5.3 重力轉彎的攻角控制 71 第6章 結論 75 6.1 總結 75 6.2 未來研究方向 76 參考文獻 77

    [1] R. S. Ryan and J. S. Townsend, "Fundamentals and issues in launch vehicle design," Journal of Spacecraft and Rockets, vol. 34, no. 2, pp. 192-198, 1997.
    [2] G. J. Culler and B. D. Fried, "Universal gravity turn trajectories," Journal of Applied Physics, vol. 28, no. 6, pp. 672-676, 1957.
    [3] C.-H. ZEE, "Powered flight trajectories of rockets under oriented constant thrust," AIAA Journal, vol. 1, no. 3, pp. 602-606, 1963.
    [4] D. W. Callaway, "Coplanar Air Launch with Gravity-Turn Launch Trajectories," 2004.
    [5] R. Yang and X. Liu, "Gravity-turn-based precise landing guidance for reusable rockets," in Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October 23–25, 2020, 2022: Springer, pp. 3423-3434.
    [6] R. E. Bilstein, Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicle. Diane Publishing, 1999.
    [7] A. Mohan, M. Sivadas, and E. R. Samuel, "Control of Attitude Trajectory of Launch Vehicle Using Optimal LQR-Based PID Controller," in Congress on Control, Robotics, and Mechatronics, 2024: Springer, pp. 391-404.
    [8] Z. Wang, K. Lu, C. Yu, N. Yao, L. Wang, and J. Zhao, "Rocket Self-learning Control based on Lightweight Neural Network Architecture Search," in 2022 IEEE International Conference on Unmanned Systems (ICUS), 2022: IEEE, pp. 1621-1626.
    [9] L. Sopegno, P. Livreri, M. Stefanovic, and K. P. Valavanis, "Thrust vector controller comparison for a finless rocket," Machines, vol. 11, no. 3, p. 394, 2023.
    [10] J. R. Wertz, Spacecraft attitude determination and control. Springer Science & Business Media, 2012.
    [11] D. A. Vallado, Fundamentals of astrodynamics and applications. Springer Science & Business Media, 2001.
    [12] 胡雋, "混合運載火箭的入軌模擬," 2024.
    [13] A. Tewari, Atmospheric and space flight dynamics. Springer, 2007.
    [14] W. Du, Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle. Iowa State University, 2010.
    [15] J. Ries, R. Eanes, C. Shum, and M. Watkins, "Progress in the determination of the gravitational coefficient of the Earth," Geophysical research letters, vol. 19, no. 6, pp. 529-531, 1992.
    [16] R. Kathan, D. Morgenweck, R. Kaess, and T. Sattelmayer, "Validation of the computation of rocket nozzle admittances with linearized euler equations," Progress in Propulsion Physics, vol. 4, pp. 135-148, 2013.
    [17] 李政興 and 林清安, "發射載具的重力轉彎與姿態控制," 2009.
    [18] E. L. Houghton and P. W. Carpenter, Aerodynamics for engineering students. Elsevier, 2003.
    [19] L. M. Milne-Thomson, Theoretical aerodynamics. Courier Corporation, 1973.
    [20] E. Astronautica. http://www.astronautix.com/index.html (accessed (accessed.
    [21] L. Sopegno, P. Livreri, M. Stefanovic, and K. P. Valavanis, "Linear quadratic regulator: A simple thrust vector control system for rockets," in 2022 30th Mediterranean Conference on Control and Automation (MED), 2022: IEEE, pp. 591-597.
    [22] 洪毅珽, "發射載具的姿態調整控制," 碩士, 電機與控制工程系所, 國立交通大學, 2019年, 2019.
    [23] A. Ünal, K. Yaman, E. Okur, and M. A. Adlı, "Design and implementation of a Thrust Vector Control (TVC) test system," Politeknik Dergisi, vol. 21, no. 2, pp. 497-505, 2018.
    [24] K. E. Tsiokovskiy. "Reactive Flying Machines." https://www.tsiolkovsky.org/en/the-cosmic-philosophy/collected-works-of-k-e-tsiokovskiy-volume-ii-reactive-flying-machines-en-2/ (accessed.
    [25] G. A. Crowell Sr, "The descriptive geometry of nose cones," URL: http://www. myweb. cableone. net/cjcrowell/NCEQN2. doc, 1996.
    [26] F. Celani, "Global and robust attitude control of a launch vehicle in exoatmospheric flight," Aerospace Science and Technology, vol. 74, pp. 22-36, 2018.
    [27] S. Kim, A. Tullu, and S. Jung, "Linearized State-Space Model-Based Attitude Control for Rocket with Four Controllable Fins: Part 1-1. Basic Modeling and Identification," IEEE Access, 2023.
    [28] A. Tewari, Advanced control of aircraft, spacecraft and rockets. John Wiley & Sons, 2011.
    [29] R. Sumathi and M. Usha, "Pitch and yaw attitude control of a rocket engine using hybrid fuzzy-PID controller," The Open Automation and Control Systems Journal, vol. 6, no. 1, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE