| 研究生: |
黃雅慧 Huang, Ya-Hui |
|---|---|
| 論文名稱: |
Protein tyrosine phosphatases(s)在調控血管新生上所扮演的角色 Characterization of protein tyrosine phosphatases(s) involved in the regulation of angiogenesis |
| 指導教授: |
吳梨華
Wu, Li-Wha |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 血管新生 、PTP-PEST 、內皮細胞 |
| 外文關鍵詞: | endothelial cells, angiogenesis, PTP-PEST, protein tyrosine phosphatase |
| 相關次數: | 點閱:135 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在調控許多細胞內基本的訊息傳遞中,tyrosine phosphorylation扮演著一個相當重要的角色,包括調控細胞的移動,增生,分化,代謝,細胞週期,細胞與細胞的溝通,基因的轉錄,離子通道,免疫反應及細胞的存活等方面。此外,在內皮細胞的調控中,tyrosine phosphorylation也扮演著舉足輕重的角色。目前已知,血管的建立及重建是以旁分泌(paracrine)的方式調控。而在其中的許多訊息傳遞因子皆是透過結合到固定的protein tyrosine kinase接受器上,而將訊息往下傳。在in vivo中,tyrosine phosphorylation為一種可逆且為動態的過程,而protein phosphorylation的情況是由protein tyrosine kinases (PTKs)和protein tyrosine phosphatases (PTPs)共同調節。就如同已經被研究的相當清楚的PTKs,PTPs也是由一個由相當多成員所組成的酵素家族。目前對於某些內皮細胞專一PTKs的角色和機轉的探討已經有相當不錯的了解,但是對於內皮細胞專一的PTPs則仍了解不深。利用degenerate primers尋找內皮細胞表現的PTPs的過程中,共找到9個在人類臍帶靜脈內皮細胞中表現的PTPs。PTP-PEST,一個已知和細胞移動及細胞附著的訊息傳遞路徑相關的PTP,能在內皮細胞中表現。因為血管新生的一個重要指標就是細胞的移動,因此我們推論PTP-PEST可能在血管新生中扮演一個角色。利用電穿孔法(electroporation),我們能成功的在內皮細胞中將PTP-PEST過度表現(overexpression)及基因減弱(利用載體為基礎的RNAi干擾技術)。而在血管新生相關的功能性分析方面,首先在管狀形成實驗中,當PTP-PEST被大量表現或是基因減弱時,都會損害內皮細胞所形成的管狀結構和減低管狀密度。然而在同樣的實驗狀況下,內皮細胞的移動速度卻反之增加,但是細胞增生速度卻不受影響。雖然仍需要更多的實驗來解答細胞移動和管狀形成結構有著相對的結果,但是PTP-PEST似乎在內皮細胞中對細胞的移動和管狀形成的調控上扮演著重要角色。
Tyrosine phosphorylation is a critical event in signal transduction pathway that regulates fundamental cellular processes including cellular growth, cell migration, differentiation, metabolism, cell cycle, cell-cell communications, gene transcription, ion channels, the immune response, and survival. It is also critical for many endothelial cell processes. The establishment and remodeling of blood vessels is controlled by paracrine signals, many of which are protein ligands that bind to distinct receptor protein tyrosine kinases. In vivo, tyrosine phosphorylation is a reversible and dynamic process; protein phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Like the well-characterized PTKs, PTPs constitute a large and diverse family of enzyme. Although the role and mechanisms of certain endothelium-specific PTKs have been delineated, less is known about their PTPs counterparts. In the search for endothelial-expressed PTPs using degenerate primers, 9 PTPs were expressed in HUVECs. PTP-PEST, implicated in mitogenic signaling and cell-adhesion induced signaling, was expressed in endothelial cells. Because cell migration is also an important indicator of angiogenesis, we thus proposed that PTP-PEST might be a candidate PTP involved in the regulation of angiogenesis. Using electroporation, PTP-PEST was successfully overexpressed or knockdowned with RNAi in HUVECs. Through several angiogenic-associated functional assays, we found that the integrity and the layer number of tube structure were impaired, and tube density was decreased when PTP-PEST was disregulated either by overexpression or RNAi knockdown techniques. However, the endothelial migration rate was increased but proliferation rate was not influenced. Although more studies are needed to confirm the contradictory result from migration and tube formation assays, a tight control of PTP-PEST appears to play an important role for cell migration and tube formation in endothelial cells.
Algire, G.H. (1943). Microscopic studies of the early growth of a transplantable melanoma of the mouse, using the transparent-chamber technique. J. Natl. Cancer Inst. 4, 13-20.
Algire, G.H., Chalkley, H.W., Legallais, F.Y., and Park, H.D. (1945). Vascular reactions of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. 6, 73-85.
Angers-Loustau, A., Coté, J.F., Charest, A., Dowbenko, D., Spencer, S., Lasky, L.A., and Tremblay, M.L. (1999). Protein tyrosine phoshpatase-PEST regulates focal adhesion disassembly, migration and cytokinesis in fibroblases. J. Cell Biol. 144, 1019-1031.
Ayad, S., Boot-Handford, R.P., Humphries, M.J., Kadler, K.E., and Shuttleworth, C.A. (1998). The extracellular proteins, p149-152. In The extracellular matrix facts book, section II, 2nd ed. (Academic Press, Harcourt Brace & Co., Publishers, San Diego, Calif.).
Barton, G.M., and Medzhitov, R. (2002). Retroviral delivery of small interfering RNA into primary cells. Proc. Natl. Acad. Sci. USA 99, 14943-14945.
Bass, B.L. (2001). RNA interference. The short answer. Nature 411, 428-429.
Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). A system for stable expression of short intergering RNAs in mammalian cells. Science 296, 550-553.
Bussolino, F., Di Renzo, M.F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., Tamagnone, L., Coffer, A., and Comoglio, P.M. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629-641.
Bergers, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews 3, 401-410.
Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends. Biochem. Sci. 22, 251-256.
Cao, L., Zhang, L., Ruiz-Lozano, P., Yang, Q., Chien, K.R., Graham, R.M., and Zhou, M. (1998). A novel putative protein-tyrosine phosphatase contains a BRO1-like domain and suppresses Ha-ras-mediated transformation. J. Biol. Chem. 273, 21077-21083.
Charest, A., Wagner, J., Jacob, S., McGlade, C.J., and Tremblay, M.L. (1996). Phosphotyrosine-independent binding of SHC to the NPLH sequence of murine protein-tyrosine phosphatases-PEST. Evidence for extended phosphotyrosine binding / phosphotyrosine interaction domain recognition specificity. J. Biol. Chem. 271, 8424-8429.
Charest, A., Wagner, J., Kwan, M., and Tremblay, M.L. (1997). Coupling of the murine protein-tyrosine phosphatases PEST to the epidermal growth factor (EGF) receptor through a Src homology 3 (SH3) domain-mediated association with Grb2. Oncogene. 14, 1643-1651.
Cheng, J., Wu, K., Armanini, M., O’Rourke, N., Dowbenko, D., and Lasky, L.A. (1997). A novel protein-tyrosine phosphatases related to the homotypically adhering and receptors. J. Biol. Chem. 272: 7264-7277.
Cohen, P. (2000). The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem. Sci. 25, 596-601.
Cong, F., Spencer, S., Cote, J.F., Wu, Y., Tremblay, M.L., Lasky, L.A., and Goff, S.P. (2000). Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol. Cell 6, 1413-1423.
Coté, J.F., Turner, C.E., and Tremblay, M.L. (1999). Intact LIM 3 and LIM 4 domains of paxillin are required for the association to a novel polyproline region (Pro 2) of protein-tyrosine phsophatase-PEST. J. Biol. Chem. 274, 20550-20560.
Davidson, A., Chow, L.M., Fournel, M., and Veillette, A. (1992). Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J. Exp. Med. 175, 1483-1492.
Dice, J.F. (1987). Molecular determinants of protein half-lives in eukaryotic cells. FASEB J. 1, 349-357.
Douglas, H. (1997). Signaling vascular morphogenesis and maintenance. Science 277, 48-50.
Ear, T., Giguere, P., Gleury, A., Stankova, J., Payet, M.D., and Dupuis, G. (2001). High efficiency transient transfection of genes in human umbilical endothelial cells by electroporation. J. Immunol. Methods 257, 41-49.
Elbashir, S.M. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188-200.
Fachinger, G., Deutsch, U., and Risau, W. (1999). Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18, 5948-5953.
Florio, T., Thelung, S., Arena, S., Corsro, A., Bajetto, A., Schettini, G., and Stork, P.J. (2000). Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. J. Physiol. Paris. 94, 239-250.
Folkman, J., and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288, 551-556.
Folkman, J., and D’Amore, P.A. (1996). Blood vessel formation: what is its molecular basis? Cell 87, 1153-1155.
Fotsis, T., Pepper, M., Adlercreuts, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993). Genistein, a dietary-derived inhibitor of in-vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90, 2690-1694.
Garton, A.J., and Tonks, N.K. (1994). PTP-PEST: a protein tyrosine phosphatases regulated by serine phosphorylation. EMBO J. 13, 3763-3771.
Garton, A.J., Flint, A.J., and Tonks, N.K. (1996). Identification of p130cas as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Mol. Cell. Biol. 16, 6408-6418.
Garton, A.J., Burnham, M.R., Bouton, A.H., and Tonks, N.K. (1997). Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatases substrate recognition. Oncogene 15, 877-885.
Garton, A.J., and Tonks, N.K. (1999). Regulation of fibroblast motility by the protein tyrosine phosphatases PTP-PEST. J. Biol. Chem. 274, 3811-3818.
Habib, T., Herrera, R., and Decker, S.J. (1994). Activators of protein kinase C stimulate associationof Shc and the PEST tyrosine phosphatases. J. Biol. Chem. 269, 25243-25246.
Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
Healy, J.M., Murayama, O., Maeda, T., Yoshino, K., Sekiguchi, K., and Kikuchi, M. (1995). Peptide ligands for integrin v3 selected from random phage display libraries. Biochemistry 34, 3948-3955.
Hooft van Huijsduijnen, R. (1998). Protein tyrosine phosphatases: counting the trees in the forest. Gene 225, 1-8.
Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 77, 1311-1315.
Hunter, T. (2000). Signaling – 2000 and beyond. Cell 100, 113-127.
Ide, A.G., Baker, N., and Warren, S.L. (1939). Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891-899.
Int. Hum. Genome Seq. Consort. (2001). Initial sequencing and analysis of human genome. Nature 409, 860-921.
Koivunen, E., Gay, D.A., and Ruoslahti, E. (1993). Selection of peptides to the 51 integrin from phage display library. J. Biol. Chem. 268, 20205-20210.
Kolmodin, K., and Aqvist, J. (2001). The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett. 498, 208-213.
Liotta, L.A., and Kohn, E.C. (2001). The microenvironment of the tumour-host interface. Nature 411, 375-379.
Li, L., and Dixon, J.E. (2000). Forms, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immuno. 12, 75-84.
Maehama, T., Taylor, G.S., and Dixon, J.E. (2001). PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247-279.
Nakamura, K., Shima, H., Watanabe, M., Haneji, T., and Kikuchi, K. (1999). Molecular cloning and characterization of a novel dual-specificity protein phosphatases possibly involved in spermatogenesis. Biochem. J. 344, 819-825.
Masuda, K., Shima, H., Watanabe, M., and Kikuchi, K. (2001). MKP-7, a novel mitogen-activated protein kinase phosphatases, functions as a shuttle protein. J. Biol.Chem. 276, 39002-39011.
MaManus, M.T., and Sharp P.A. (2002). Gene silencing in mammals by small interfering RNAs.
Mohri, H. (1996). Fibronectin and integrins interactions. J. Investig. Med. 44, 429-441.
Nakamura, K., Tanoue, K., Satoh, T., Takekawa, M., Watanebe, M., Shima, H., and Kikychi, K. (2002). A novel low-molecular-mass dual-specificity phosphatases, LDP-2, with a naturally occurring substitution that affects substrate specificity. J. Biochem. 132, 463-470.
Naworth, R., Poell, G., Ranft, A., et al. (2002). VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 21, 4885-4895.
Nishiya, N., Iwabuchi, Y., Shibanuma, M., Cote, J.F., Tremblay, M.L., and Nose, K. (1999). Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatases PEST (PTP-PEST) through its LIM 3 domain. J. Biol. Chem. 274, 9847-9853.
Nykanen, A., Haley, B., and Zamore, P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321.
Östman, A., and Böhmer, F.D. (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 11, 258-266.
Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., and Conklin, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948-958.
Paul, C.P., Good, P.D., Winer, I., and Engelke, D.R. (2002). Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505-508.
Pierschbacher, M.D., and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33.
Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674.
Rogers, S.W., and Rechsteiner, M.C. (1986). Microinjection studies on selective protein degradation: relationships between stability, structure, and location. Biomed Biochim Acta. 45, 1611-1618.
Ruoslahti E and Pierschbacher MD (1986). Arg-Gly-Asp: a versatile cell recognition signal. Cell 44, 517-518.
Sastry, S.K., Lyons, P.D., Schaller, M.D., and Burridge, K. (2002). PTP-PEST controls motility through regulation of Rac1. J. Cell Sci. 115, 4305-4316.
Schwachtgen, J.L., Ferreira, V., Meyer, D., and Kerbiriou-Nabias, D. (1994). Optimization of the transfection of human endothelial cells by electroporation. Biotechniques 17, 882-887.
Scott, R., Rodney, W., and Martin, R. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364-369.
Sharp, P.A. (2001). RNA interference--2001. Genes Dev. 15, 485-490.
Shen, Y., Schneider, G., Cloutier, J.F., Veillette, A., and Schaller, M.D. (1998). Direct association of protein-tyrosine phosphatases PTP-PEST with paxillin. J. Biol. Chem. 273, 6474-6481.
Shen Y, Lyons, P., Cooley, M., Davidson, D., Veillette, A., Salgia, R., Griffin, J.D., and Schaller, M.D. (2000). The noncatalytic domain of protein-tyrosine phosphatases-PEST targets paxillin for dephosphorylation in vivo. J. Biol. Chem. 275, 1405-1413.
Shi, Y. (2003). Mammalian RNAi for the masses. Trends Genet. 19, 9-12.
Skorstengaard K, Jensen MS, Sahl O, Petersen TE and Magnusson S (1986). Purification of a complete primary structure of the heparin-, cell-, and DNA-binding domain of bovine plasma fibronectin. Eur. J. Biochem. 154, 15-29.
Sridhar, R., Hanson-Painton, O., and Cooper, D.R. (2000). Protein kinases as therapeutic targets. Pharm. Res. 17, 1345-1353.
Sui, G., Soohoo, C., Affarel, B., Gay, F., Shi, Y., and Forrester, W.C. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515-5520.
Tanaka, S., Sugimachi, K., Yamashita, Y., Shirabe, K., Shimada, M., Wands, J.R., and Sugimachi, K. (2003). Angiogenic switch as a molecular target of malignant tumors. J. Gastroenterol. 38 Suppl 15, 93-97.
Takekawa, M., et al. (1992). Cloning and characterization of a human cDNA encoding a novel putative cytoplasmic protein-tyrosine-phosphatase. Biochem Biophys Res Commun. 189, 1223-1230.
Teifel, M., Heine, L.T., Milbredt, S., and Friedl, P. (1997). Optimization of transfection of human endothelial cells. Endothelium 5, 21-35.
Thompson, L.J., Jiang, J., Madamanchi, N., Ronge, M.S., and Patterson, C. (2001). PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. Am. J. Physiol. Heart Circ. Physiol. 281, H396-403.
Tonks, N.K. (1993). Introduction: protein tyrosine phosphatases. Semin. Cell Biol. 4: 373-377.
Tonks, N.K. (1996). Form form to function: signaling by protein tyrosine phosphatases. Cell 87, 365-368.
Tonks, N.K., and Neel, B.G. (2001). Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol. 13, 182-195.
Tuschl, T. (2002). Expanding small RNA interference. Nat. Biotechnol. 20, 446-448.
Visser, M., Sonneveld, R.D., Willemze, R., and Landegent, J.E. (1996). Haemopoietic growth factor tyrosine factor kinase receptor expression profiles in normal haemopoiesis. Br. J. Haematol. 94, 236-241.
Wadham, C., Gamble, H.R., Vadas, M.A., and Khew-Goodall, Y. (2000). Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J. Cell Sci. 113, 3117-3123.
Williams, B.R. (1999). PKR; a sentinel kinase for cellular stress. Oncogenes 18, 6112-6120.
Wu, L.W., Baylink, D.J., and Lau, K.H. (1996). Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase. Biochem. J. 316, 515-523.
Yamaguchi, T.P., Dumont, D.J., Conlon, R.A., Breitman, M.L., Rossant, J. (1993). Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118, 489-498.
Yang, Q., Co, D., Sommercorn, J., and Tonks, N.K. (1993). Cloning and expression of PTP-PEST. A novel, human, nontransmembrane protein tyrosine phosphatases. J. Biol. Chem. 268, 6622-6628.
Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.
Zhang, Z.Y. (2002). Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42, 209-234.