簡易檢索 / 詳目顯示

研究生: 林宏松
Lin, Hung-Sung
論文名稱: 以天然鍵結軌域方法研究不飽和系統內雙硫鍵的鍵結特性
Studies of the Characteristic Nature of Disulfide Bond in Unsaturated Systems by Natural Bond Orbital Method
指導教授: 黃福永
Huang, Fu-Yong
王小萍
Wang, Sao-Pin
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 天然鍵結軌域方法雙硫鍵抗HIV活性σ型自由基陰離子
外文關鍵詞: natural bond orbital method, disulfide bond, anti-HIV activities, σ-type radical anion
相關次數: 點閱:157下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由天然鍵結軌域(natural bond orbital,NBO)方法提供以鍵結軌域(bond orbital,BO)空間所展開形成之分子軌域(molecular Orbital,MO)的組成分析,可顯示出以熟悉的路易斯結構所表達的化學訊息。因此,透過實驗化學家獲得取代基對MO能量變化是很容易被接受。經由NBO計算所獲得在BO上電子密度,透露了所有化學鍵上的電子分佈,並提供了由路易斯結構描述電子不定域化的模式。
    對於CF3官能基,經由NBO方法已經發現了由σ*CF BO產生對MO的穩定效應和由lp(F)BO引起對MO的不穩定效應。由於這兩個競爭的pi效應幾乎被抵消,由COOP(crystal orbital overlap populations)的值幾乎為零所表明的那樣,因此藉由使用拉電子基團的觀念來降低MO能量,這種化學取代策略發現可有效地解釋將Ir(III)配位錯合物的磷光衍生物顏色調整為藍色區域。
    使用對稱二取代二苯二硫(diphenyl disulfide,DPDS)的衍生物進行抗HIV活性研究和雙硫鍵還原性裂解的共同特徵明顯指向DPDS的最低的未佔用電子MO(lowest unoccupied molecular orbital,LUMO)之性質。在抗HIV活性研究中考慮了LUMO能量,而LUMO的組成對於雙硫鍵還原性裂解有關的逐步機轉中σ型自由基陰離子的方法為基礎,已經合理化的解釋:對稱的2,2'-二取代的DPDS衍生物對HIV-1核衣殼蛋白p7鋅指(zinc fingers)的親電子反應速率分布於廣泛範圍。從NBO的角度來看,LUMO的氫鍵穩定主要由σ*SS BO的分子內氫鍵穩定來掌控。在DPDS的LUMO組成中,σ*SS BO比苯基的 π*CC BOs有較大的組成,為形成σ-型自由基陰離子奠定了基礎,此結果是透過使用4,4’-取代DPDS衍生物雙硫鍵進行還原性裂解的研究被發現的。 DPDS及其衍生物中雙硫鍵的減弱歸因於經由負超共軛作用在σ*SS BO上使電子密度增加。

    Analysis of compositions of a molecular orbital (MO) expanded in the bond orbital (BO) space provided by the natural bond orbital (NBO) method exhibits information based on the familiar Lewis structure. It is therefore straightforward to explain observations, through chemical substitution on MO energies, obtained by experimental chemists. The electron densities on BOs obtained by NBO calculations reveal the electron distributions on all chemical bonds and supply electron delocalization patterns described in the Lewis structure.
    For a CF3 group, both stabilization of the MO exerted by σ*CF BO and destabilization of MO by lp(F) BO have been found by the NBO method. Since these two competing pi-effects are nearly counterbalanced as indicated by the vanishing values of crystal orbital overlap population, the chemical substitution strategy originated from lowering of MOs by using electron-withdrawing group has been found effective in color-tuning to blue region. Those orbital-based rationalizations give insight of color-tuning results observed for phosphorescent derivatives of Ir(III)-complexes.
    The common feature involved in the anti-HIV activity study and the reductive cleavage of the disulfide bond, performed on symmetrical disubstituted derivatives diphenyl disulfide (DPDS), is apparently pointed to the lowest unoccupied MO (LUMO) properties of DPDS. The LUMO energy is considered in the anti-HIV activity study, while the LUMO compositions are critical concerning the formation of the σ-type radical anion in the stepwise mechanism associated with the reductive cleavage of the disulfide bond. The symmetrical 2,2’-disubstituted DPDS-derivatives showing widely spanning rates of electrophilic attack of the HIV-1 nucleocapsid protein p7 zinc fingers have been rationalized, based on the LUMO-lowering approach, by the substituents’ π-effects and the hydrogen bond (HB) stabilization effects. In the NBO viewpoint, hydrogen bond stabilization of the LUMO is primarily governed by intramolecular HB-stabilization of the σ*SS BO. The larger composition of σ*SS BO, compared to π*CC BOs of phenyl groups, to the LUMO of DPDS lays the foundation for the formation of σ-type radical anion, found by studies of reductive cleavage of disulfide bond performed on 4,4’-disubstitued DPDS-derivatives. The weakening of disulfide bond in DPDS and its derivatives is attributed to the increasing electron density on σ*SS BO through negative hyperconjugation.

    Abstract in Chinese………………………………………….Ⅰ Abstract............................................Ⅱ Acknowledgement…………………………………………III Contents.....................................Ⅳ List of Tables……………………………………………Ⅵ List of Figure……… Ⅷ Symbal and Abrrevication..................... Ⅹ Chapter 1 Introduction…………………1 Chapter 2 The Theoretical Background………………………4 2-1、Localized molecular orbital and the natural bond orbital (NBO) method....................4 2-2、The natural bond orbital (NBO) method..............4 2-2-1 BOs in diatomic molecules AB and H2O molecule—Illustrations of NBO formulation...............5 2-3、H-bonding and the natural bond orbital(NBO) approach...........7 2-4、Hyperconjugation and Negative Hyperconjugation Stabilization of localized electron pairs in Lewis Structures...........................8 2-5、Development of the Negative Hyperconjugation........9 2-5-1 The Origin..........................9 2-5-2 The Anionic Hyperconjugation.................9 2-5-3 Hyperconjugation-dependent conformational energy.....................11 2-5-4 The importance of negative hyperconjugation reported by Schleyer.................11 2-6、Quantization of the hyperconjugation by the NBO method............................12 2-7、Two types of H-bonding.............12 Chapter 3 Calculation Methods and Experimental Details.…14 Chapter 4 Results and Discussion………………………………16 4-1、An Insight of the Results Provided by Color-Tuning Studies Made on Ir(III) Complexes: A pi-Neutral CF3 Group viewed by adjusting Energies of pi-type Molecular Orbitals......................................16 4-2、Comments on Chemical Properties Reported for Diphenyl Disulfide and Its Derivatives: I. The merit of the phenyl groups...............25 4-3、Comments on Some Chemical Properties of Diphenyl Disulfide and Its Derivatives: II. Correlating the Studies of Reductive Cleavage of Disulfide Bonds with the Studies of Anti-HIV Activity with LUMO Properties................36 Chapter 5 Conclusions………………………………………………45 References…………………………………………………………46

    [1]. Su, W. L.; Doctoral Dissertation, “Orbital-Based Rationalizations of Fine-Tuning of Luminescent Materials--The π-Nature of Substituents and Their Site-Dependent Characteristics”, 2012. Department of Chemistry, National Cheng Kung University, instructed by Wang, S. P.
    [2]. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Burrows, P. E.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.
    [3]. Tanayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lammansky, S.; Tsyba, I., Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
    [4]. Yang, M. J.; Tsutsui, T. Jpn. Appl. Phys. 2000, 39, 828.
    [5]. Wang, Y.; Petrov, V. A.; Grushin, V. V. Pat. Appl. (Dupon) 2000
    [6]. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Comm. 2001, 1494.
    [7]. Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161.
    [8]. Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc. 2007, 129, 8247.
    [9]. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
    [10]. He, L.; Duan, L.; Qiao, J.; Wang, R.; Wei, P.; Wang, L.; Qiu Y. Adv. Funct. Mater. 2008, 18, 2123.
    [11]. Lammansky, S.; Djurovich, P. I.; Murphy, D.; Adbel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304.
    [12]. Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron 2004, 23, 419.
    [13]. Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. USA 1998, 95, 11578
    [14]. Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys. Chem. A. 2002, 106, 6871
    [15]. Domingo, L. R.; Sáez, J. A. Org. Biomol. Chem. 2009, 7, 3576.
    [16]. Perez, P.; Domingo, L. R.; Duque-Norena M.; Chamorro, E.THEOCHEM, 2009, 895, 86.
    [17]. Takizawa, S. Y.; Echizen, H.; Nishida, J. I.; Tsuzuki, T.; Tokito, S.; Yamashita, Y. Chem Let. 2007, 7, 748.
    [18]. Nazeenrudin, M. K.; Wegh, R. T.; Zhou, Z.; Klein, C.; Wang, Q.; De Angelis, F.; Fantacci, S.; Gratze, M. Inorg. Chem. 2006, 45, 9245.
    [19]. Ladouceur, S.; Fortin, D.; Zysman-Colman, E. Inorg. Chem. 2010, 49, 5625.
    [20]. Xu, M. L.; Zhou, R.; Wang, G. Y.; Xiao, Q.; Du, W. S.; Che, G. B. Inorg.Chim. Acta. 2008, 361, 2407.
    [21]. Su, W. L.; Wang, C. C.; Wang, S. P. J. Chin. Chem. Soc. 2012, 59, 1385.
    [22]. Radom, R.; Hoffmann, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 622.
    [23]. Schleyer, P. v. R.; Kos, A. J. Tetrahedron. 1983, 39, 1141.
    [24] Schleyer, P. v. R.; Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.
    [25]. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362.
    [26]. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434.
    [27]. Salzner, U.; Schleyer, P. v. R. Chem. Phys. Lett. 1992, 190, 401.
    [28]. Rablen, P. R.; Hoffmann, R. W.; Hrovat, D. A.; Borden, W. T. J. Chem. Soc. Perkin Trans. 1999, 2, 1719.
    [29]. Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973 and references cited therein.
    [30]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
    [31]. Parr, R. G.; Szentpály, L. v.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.
    [32]. Parr, R. G. & Yang, W. “Density-Functional Theory of Atoms and Molecules”, 1989, Oxford Univ. Press, Oxford.
    [33]. Chen, W. T.; Doctoral Dissertation, “Theoretical studies of Some Biomedical Behaviors and Chemical Substitution Effects”, 2012, Department of Chemistry, National Cheng Kung University, instructed by Chen, S. H and Wang; S. P.
    [34]. Chen, W. T.; Chen, Y. J.; Wu, C. S.; Lin, J. J.; Su, W. L.; Chen, S. H.; Wang, S. P. Inorg. Chim. Acta. 2013, 408, 225.
    [35]. Lin, H. S.; Lu, S. Y.; Huang F. Y.; Wu, Y.; Su, W. L.; Wang, S. P. J. Chin. Chem. Soc. 2015, 62, 939.
    [36]. Lin, H. S.; Wu, Y.; Liu, Y. J.; Chen, S. H.; Chen, W. T.; Wang, S. P. J. Chin. Chem. Soc. 2020, 67, 324.
    [37]. Lin, H. S.; Wu, Y; Liu, Y. J.; Chen, S. H.; Chen, W. T.; Wang, S. P. “Comments on Some Chemical Properties of Diphenyl Disulfide and Its Derivatives: II. Correlating the Studies of Reductive Cleavage of Disulfide Bonds with the Studies of Anti-HIV Activity”, J. Chin. Chem. Soc. (accepted).
    [38]. Antonello, S.; Daasbjerg, K.; Jensen, H.; Ferdinando Taddei, F.; Flavio Maran, F. J. Am. Chem. Soc., 2003, 125, 14905.
    [39]. Daasbjerg, K.; Jensen, H.; Benassi, R.; Taddei, F.; Antonello, S.; Gennaro, A.; Maran, F. J. Am. Chem. Soc. 1999, 121, 1750.
    [40]. Levine, I. N.; “Physical Chemistry”, McGraw-Hill, 1978. ISBN 0-07-037418-X
    [41]. Brunck, T. B.; Weinhold, F. J. Am. Chem. Soc. 1976, 98, 4392.
    [42]. Mulliken, R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc., 1941, 63, 41.
    [43]. Lee H. Y.; Wang, S. P.; Chang, T. C. Int. J. Quant. Chem. 2001, 81, 53.
    [44]. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066.
    [45]. Brockway, L. O. J. Phys. Chem. 1937, 41, 185.
    [46]. Pross, A.; Radom, L.; Riggs, N. V. J. Am. Chem. Soc. 1980, 102, 2253.
    [47]. Radom, I.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 5935.
    [48]. Chiang, H. W.; Master Thesis, “Stabilization of Electron Lone Pairs in (A) H-bonding of DNA Base Pairs and (B) Halogen-Substituted Methanes”, 2009. Department of Chemistry, National Cheng Kung University, instructed by Wang, S. P.
    [49]. Friedman, D. S.; Francl, M. M.; Allen, L. C. Tetrahedron, 1985, 41, 499.
    [50]. Dixon, D. A.; Fukunaga, T.; Smart, B. E. J. Am. Chem. Soc. 1986, 108, 4027.
    [51]. Fujita, M.; Suzuki, M.; Ogata, K.; Ogura, K. Tetrahedron Lett. 1991, 32, 1463.
    [52]. Pross, A.; DeFrees, D. J.; Levi, B. A.; Pollack, S. K.; Radom, L.; Hehre, W. J. J. Org. Chem. 1981, 46, 1693.
    [53]. Wiberg, K. B.; Rablen, P. R. J. Am. Chem. Soc. 1993, 115, 614.
    [54]. Lodwin, P. O. Phys. Rev. 1955, 97, 1474.
    [55]. (a) Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248-255; (b) Fonseca, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194.
    [56]. Wang, S. P.; Yan, K. M.; Hsu, W. I.; Huang, M. Y.; Wu, H. Y. J. Chin. Chem. Soc. 2009, 56, 1205.
    [57]. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis. 1989, 858; (b) Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560; (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854.
    [58]. Bent, H. A. Chem. Rev. 1961, 61, 275.
    [59]. (a) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447.
    [60]. (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253; (b) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A. 2001, 105, 10607; (c) Scheiner, S.; Kar, T. J. Phys. Chem. A. 2002, 106, 1784.
    [61]. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973.
    [62]. Adamo,C.; Barone,V. Chem. Phys. Lett. 1997 , 274 , 242.
    [63]. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
    [64]. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.
    [65]. Frisch, M. J. et al; Gaussian 98 Revision A.11, Gaussian, Inc., Pittsburgh, PA, 2001.
    [66]. Hoffman,R. Rev. Mod. Phys. 1988, 60, 601.
    [67]. O'Boyle, N. M.; Tenderholt, A. L; Langner, K. M. J. Comp. Chem. 2008, 29, 839.
    [68]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
    [69]. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO, Version 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001 (http://www.chem.wisc. edu/~nbo5). Source code has been merged to Gaussian 98 to replace the old version of NBO program.
    [70]. (a) Coppo,P.; Plummer, E. A.; De Cola, L. Chem. Commun. 2004, 1774. (b) Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc. 2007, 129, 8247. (c) Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J.W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161.
    [71]. (a) De Angelis, F.; Fantacci, S.; Evans, N.; Klein, C.; Zakeeruddin, S. M.; Moser, J. E.; Kalyanasundaram, K.; Bolink, H. J.; Gra1tzel, M.; Nazeeruddin, M. K. Inorg. Chem. 2007, 46, 5989. (b) Censo, D. D.; Fantacci, S.; De Angelis, F.; Klein, C.; Evans, N.; Kalyanasundaram, K.; Bolink, H. J.; Gra1tzel, M.; Nazeeruddin, M. K. Inorg. Chem. 2008, 47, 980.
    [72]. Kohn, W.; Sham, L. Phys. Rev. A. 1965, 140, 1133.
    [73]. Su, W. L.; Huang, H. P.; Chen, W. T.; Hsu, W. I.; Chang, H. Y.; Ho, S. Y.; Wang, S. P.; Shyu, S. G. J. Chin. Chem. Soc. 2011, 58, 163.
    [74]. Hoffman, R. Rev. Mod. Phys. 1988, 60, 601. (see section V. Where are the bonds? and references 9 cited therein)
    [75]. Nazeeruddin, M. K.; Wegh, R. T.; Zhou, Z.; Klein, C.; Wang, Q.; De Angelis, F.; Fantacci, S.; Gra1tzel, M. Inorg. Chem. 2006, 45, 9245.
    [76]. Zhou, G.; Ho, C.-L.; Wong, W.-Y.; Wang, Q.; Ma,D.; Wang, L.; Lin, Z.; Marder, T.-B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.
    [77]. Zhou, G.; Wang, Q.; Wang, X; Ho C.-L.; Wong, W.-Y.; Ma, D.; Wang, L.; Lin, Z. J. Mater. Chem. 2010, 20, 7472.
    [78]. (a) Schleyer, P. v. R.; Kos, A. J. Tetrahedron, 1983, 39, 1141. (b) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. SOC. 1987, 109, 1362. (c) Ran, P. R.; Hoffmann, R. W.; Hrovat, D. A.; Borden, W. T. J. Chem. Soc. Perkin Trans. 1999, 2, 1719.
    [79]. Perez, P; Domingo, L. R.; Duque-Norena, M; Chamorro E. THEOCHEM, 2009, 895, 86.
    [80]. (a)Lake, R. F; Thompson H. Proc. Roy. Soc. A 1970, 315, 3238. (b)Sze, K. H; Brion, C. E. Chem. Phys. 1989, 137, 369.
    [81]. HOMO of the parent complex, Ir(ppy)2MDPA+, is composed primarily of Ir (35%) and ppy (61%). The LUMO of the parent is composed of MDPA (71%) and ppy (27%).
    [82]. Parr, R. G. & Yang, W. “Density-Functional Theory of Atoms and Molecules”, 1989, Oxford Univ. Press, Oxford.
    [83]. Ramos, F.; Flores, H.; Hernandez-Perez, J. M.; Sandoval-Lira, J.; Camarillo, E. A. J. Phys. Chem. A 2018, 122, 239.
    [84]. Brunck, T. B.; Weinhold, F. J. Am. Chem. Soc. 1976, 98, 4392.
    [85]. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
    [86]. Zou, L. F.; Fu, Y; Guo, Q. X.; THEOCHEM . 2007, 807, 87. (see Table 1)
    [87]. Matxain, J. M.; Asua, J. M.; Ruiperez, F; Phys. Chem. Chem. Phys. 2016, 18, 1758. (see Table 1)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE