| 研究生: |
譚羽晴 Tan, Yu-Ching |
|---|---|
| 論文名稱: |
研究脂蛋白/載脂蛋白在脂質累積、細胞老化以及DNA修復的角色 Study on the roles of lipoprotein/apolipoprotein in lipid accumulation, cellular senescence and DNA repair |
| 指導教授: |
楊孔嘉
Young, Kung-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 載脂蛋白J 、脂質 、DNA損傷反應 、細胞老化 、氧化壓力 、C型肝炎病毒 、固醇醯基轉移酶 |
| 外文關鍵詞: | Apolipoprotein J, lipid, DNA damage responses, cellular senescence, oxidative stress, hepatitis C virus, sterol-O acyltransferase |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂蛋白是由脂質以及參與多功能的載脂蛋白所構成,例如:循環運輸、病毒顆粒製造以及壓力調節。DNA修復反應(DDR)的損傷已被證實會經由增加活性氧自由基(ROS)的製造,促進代謝失調並導致脂質代謝的改變。另外,C型肝炎病毒(HCV)感染也會增加細胞內ROS的製造以及損傷DDR,使得細胞更易於DNA突變。HCV不只引發病理性脂質累積,還會增進載脂蛋白J(apoJ)的表現,增加感染性HCV病毒顆粒的製造。此外,各種壓力例如:DNA損壞以及ROS,會引發細胞老化,使得細胞週期停滯。然而,脂質以及壓力誘導的載脂蛋白在DDR及細胞老化中是否扮演角色,目前仍不清楚。這裡我們假設:功能性脂質以及壓力誘導的載脂蛋白可能在健康的細胞中促成DDR以及細胞老化。結果顯示肝臟細胞對基因毒素的敏感度會受到HCV感染以及培養持續期間的影響。相同地,在輕微的氧化壓力或HCV急性感染之下,肝臟細胞表現嚴重的細胞老化,但此現象在慢性HCV感染時卻較輕微。這也許與細胞內ROS的清除能力有關,此處HCV急性感染相較於慢性感染有不同的細胞老化反應。此外,細胞內的總膽固醇及三酸甘油脂含量在感染後第137天有明顯的增加,但在此之後又減少了。另外,表現量增加的ApoJ與固醇醯基轉移酶2(SOAT2,一種將游離膽固醇轉變成膽固醇酯的內質網酵素)交互作用,並加強SOAT的活性去引發被HCV感染的細胞的病理性脂質累積。SOAT活性的抑制使得細胞存活率降低並增加細胞毒素誘導的細胞老化。總體而言,壓力誘導的載脂蛋白以及脂質可能在DDR、脂質累積及細胞老化扮演關鍵的角色。膽固醇及apoJ的恆定對於細胞調節細胞內的氧化壓力是必需要的。
Lipoproteins are comprised of lipids and apolipoproteins that participate in numerous functions such as circulatory transportation, viral particle production and stress regulation. It is evidenced that impaired DNA damage responses (DDR) promoted metabolic disorders and caused changes in lipid metabolism by increasing reactive oxygen species (ROS) production. In addition, hepatitis C virus (HCV) infection also increased intracellular ROS and impaired DDR, causing cells prone to DNA mutation. HCV not only induced pathological lipid accumulation but also increased the expression of apolipoprotein J (apoJ) to enhance infectious HCV particle production. Furthermore, various stresses such as DNA damage and ROS induced cellular senescence to pause cell cycle. However, it is still unknown whether lipids or stress-induced apolipoproteins play a role in DDR and cellular senescence. Here, we hypothesized that functional lipids and stress-induced apolipoproteins might contribute to DDR and cellular senescence in healthy cells. The results showed that sensitivity to genotoxins targeting base excision repair damage might be influenced by HCV infection and the cultivated duration of hepatocytes. Consistently, hepatocytes exhibited profound senescence under mild oxidative stress or with acute HCV infection, but mild in chronic HCV infection. These may be related to the ability of ROS clearance inside the cells, where HCV acute infection may have a distinct effect on cellular senescence response as compared to chronic infection. Moreover, intracellular total cholesterol and triglycerides levels were significantly increased until 137 days post infection, but decreased thereafter. In addition, the increasing level of apoJ interacted with SOAT2 (Sterol-O acyl transferase, an ER-associated enzyme that converted free cholesterol to cholesteryl ester) and enhanced SOAT activities to induce pathological lipid accumulation in HCV-infected cells. Inhibition of SOAT decreased cell viability and increased genotoxin-induced cellular senescence in hepatocytes. Together, stress-induced apolipoproteins and lipids might play crucial roles in DDR, lipid accumulation and cellular senescence. The maintenance of cholesterol and apoJ homeostasis might be necessary for the cells to regulate intracellular oxidative stress.
1. Saklayen, M.G., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep, 2018. 20(2): p. 12.
2. Alves-Bezerra, M. and D.E. Cohen, Triglyceride Metabolism in the Liver. Compr Physiol, 2017. 8(1): p. 1-8.
3. Kawano, Y. and D.E. Cohen, Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol, 2013. 48(4): p. 434-41.
4. Rohrl, C. and H. Stangl, Cholesterol metabolism-physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wien Med Wochenschr, 2018. 168(11-12): p. 280-285.
5. Chu, B.B., et al., Cholesterol transport through lysosome-peroxisome membrane contacts. Cell, 2015. 161(2): p. 291-306.
6. Maxfield, F.R. and G. van Meer, Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol, 2010. 22(4): p. 422-9.
7. Lee, R.G., et al., Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res, 2000. 41(12): p. 1991-2001.
8. Dominiczak, M.H. and M.J. Caslake, Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem, 2011. 48(Pt 6): p. 498-515.
9. Koltai, T., Clusterin: a key player in cancer chemoresistance and its inhibition. Onco Targets Ther, 2014. 7: p. 447-56.
10. Park, S., K.W. Mathis, and I.K. Lee, The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord, 2014. 15(1): p. 45-53.
11. Petropoulou, C., et al., Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett, 2001. 509(2): p. 287-97.
12. Yanagita, T. and K. Nagao, Functional lipids and the prevention of the metabolic syndrome. Asia Pac J Clin Nutr, 2008. 17 Suppl 1: p. 189-91.
13. Alabdulkarim, B., Z.A.N. Bakeet, and S. Arzoo, Role of some functional lipids in preventing diseases and promoting health. Journal of King Saud University - Science, 2012. 24(4): p. 319-329.
14. Busnello, F.M., Z.E.d.A. Santos, and B. Pontin, Lipids and Metabolic Syndrome, in Handbook of Lipids in Human Function. 2016. p. 543-556.
15. Schade, M., et al., Cellular Senescence and Their Role in Liver Metabolism in Health and Disease: Overview and Future Directions, in Hepatocellular Carcinoma - Advances in Diagnosis and Treatment. 2018.
16. Handee, W., et al., An Energy-Independent Pro-longevity Function of Triacylglycerol in Yeast. PLOS Genetics, 2016. 12(2).
17. Zhang, M., et al., Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21(Cip1/Waf1) Pathway. Oxid Med Cell Longev, 2016. 2016: p. 7524308.
18. Driessens, N., et al., Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer, 2009. 16(3): p. 845-56.
19. Halilovic, A., et al., Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal, 2016. 24(18): p. 1072-83.
20. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
21. d'Adda di Fagagna, F., Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 2008. 8(7): p. 512-22.
22. Hoeijmakers, J.H., DNA damage, aging, and cancer. N Engl J Med, 2009. 361(15): p. 1475-85.
23. Shimizu, I., et al., DNA damage response and metabolic disease. Cell Metab, 2014. 20(6): p. 967-77.
24. Mercer, J.R., et al., DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res, 2010. 107(8): p. 1021-31.
25. Turgeon, M.O., N.J.S. Perry, and G. Poulogiannis, DNA Damage, Repair, and Cancer Metabolism. Front Oncol, 2018. 8: p. 15.
26. Edifizi, D., et al., Multilayered Reprogramming in Response to Persistent DNA Damage in C. elegans. Cell Rep, 2017. 20(9): p. 2026-2043.
27. Jefferies, M., et al., Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases, 2018. 6(13): p. 589-599.
28. Petruzziello, A., et al., Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol, 2016. 22(34): p. 7824-40.
29. Kish, T., A. Aziz, and M. Sorio, Hepatitis C in a New Era: A Review of Current Therapies. P T, 2017. 42(5): p. 316-329.
30. Axley, P., et al., Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J Clin Transl Hepatol, 2018. 6(1): p. 79-84.
31. Moosavy, S.H., et al., Epidemiology, transmission, diagnosis, and outcome of Hepatitis C virus infection. Electron Physician, 2017. 9(10): p. 5646-5656.
32. Wilkins, T., et al., Hepatitis C: diagnosis and treatment. Am Fam Physician, 2010. 81(11): p. 1351-7.
33. Gonzales Zamora, J.A., Adverse Effects of Direct Acting Antivirals in HIV/HCV Coinfected Patients: A 4-Year Experience in Miami, Florida. Diseases, 2018. 6(2).
34. Millman, A.J., N.P. Nelson, and C. Vellozzi, Hepatitis C: Review of the Epidemiology, Clinical Care, and Continued Challenges in the Direct Acting Antiviral Era. Curr Epidemiol Rep, 2017. 4(2): p. 174-185.
35. Wieland, S., et al., Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014. 59(6): p. 2121-30.
36. Dustin, L.B., et al., Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect, 2016. 22(10): p. 826-832.
37. Bukh, J., The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol, 2016. 65(1 Suppl): p. S2-S21.
38. Popescu, C.I., et al., Hepatitis C virus life cycle and lipid metabolism. Biology (Basel), 2014. 3(4): p. 892-921.
39. Loizides-Mangold, U., et al., HCV 3a core protein increases lipid droplet cholesteryl ester content via a mechanism dependent on sphingolipid biosynthesis. PLoS One, 2014. 9(12): p. e115309.
40. Lavie, M. and J. Dubuisson, Interplay between hepatitis C virus and lipid metabolism during virus entry and assembly. Biochimie, 2017. 141: p. 62-69.
41. Herker, E., et al., Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med, 2010. 16(11): p. 1295-8.
42. Bankwitz, D., et al., Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. J Hepatol, 2017. 67(3): p. 480-489.
43. Lin, C.C., et al., Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol, 2014. 61(5): p. 984-93.
44. Boudreau, H.E., et al., Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol, 2009. 83(24): p. 12934-46.
45. Pal, S., et al., Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J Gastroenterol Hepatol, 2010. 25(3): p. 627-34.
46. Nguyen, T.T.T., et al., Nonstructural Protein 5A Impairs DNA Damage Repair: Implications for Hepatitis C Virus-Mediated Hepatocarcinogenesis. J Virol, 2018. 92(11).
47. Machida, K., et al., Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J Immunol, 2010. 185(11): p. 6985-98.
48. Lai, C.K., et al., Hepatitis C virus NS3/4A protein interacts with ATM, impairs DNA repair and enhances sensitivity to ionizing radiation. Virology, 2008. 370(2): p. 295-309.
49. Wang, S.C., et al., The Paradoxical Effects of Different Hepatitis C Viral Loads on Host DNA Damage and Repair Abilities. PLoS One, 2017. 12(1): p. e0164281.
50. McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol, 2018. 217(1): p. 65-77.
51. Xiao, M., et al., Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget, 2018. 9(9): p. 8772-8784.
52. Childs, B.G., et al., Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med, 2015. 21(12): p. 1424-35.
53. Campisi, J., Aging, cellular senescence, and cancer. Annu Rev Physiol, 2013. 75: p. 685-705.
54. Hayflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 1965. 37: p. 614-36.
55. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-40.
56. Petrova, N.V., et al., Small molecule compounds that induce cellular senescence. Aging Cell, 2016. 15(6): p. 999-1017.
57. Flor, A.C., et al., A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov, 2017. 3: p. 17075.
58. Ewald, J.A., et al., Therapy-induced senescence in cancer. J Natl Cancer Inst, 2010. 102(20): p. 1536-46.
59. van Deursen, J.M., The role of senescent cells in ageing. Nature, 2014. 509(7501): p. 439-46.
60. He, S. and N.E. Sharpless, Senescence in Health and Disease. Cell, 2017. 169(6): p. 1000-1011.
61. Pan, K.-L., et al., Development of NS3/4A Protease-Based Reporter Assay Suitable for Efficiently Assessing Hepatitis C Virus Infection. 2009. 53(11): p. 4825-4834.
62. Sparrow, C.P., et al., A fluorescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J Lipid Res, 1999. 40(10): p. 1747-57.
63. Lada, A.T., et al., Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J Lipid Res, 2004. 45(2): p. 378-86.
64. Tsai, P., et al., Viral dynamics of persistent hepatitis C virus infection in high-sensitive reporter cells resemble patient's viremia. J Microbiol Immunol Infect, 2018. 51(4): p. 446-455.
65. Chang, N.Y., et al., Sterol O-Acyltransferase 2 Contributes to the Yolk Cholesterol Trafficking during Zebrafish Embryogenesis. PLoS One, 2016. 11(12): p. e0167644.
66. Tan, B.L., M.E. Norhaizan, and W.P. Liew, Nutrients and Oxidative Stress: Friend or Foe? Oxid Med Cell Longev, 2018. 2018: p. 9719584.
67. Chen, Q., et al., Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med, 2019. 130: p. 48-58.
校內:2024-07-10公開