簡易檢索 / 詳目顯示

研究生: 許立達
Hsu, Li-Ta
論文名稱: 向量追蹤迴路於全球衛星定位系統軟體接收機之實現及其於多重路徑環境下之評估
Implementation of Vector Tracking Loop in GPS Software Receiver and Its Evaluation in Multipath Environments
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 144
中文關鍵詞: 向量追蹤全球定位系統多重路徑卡曼濾波器
外文關鍵詞: Vector Tracking, GPS, Multipath, Kalman Filter
相關次數: 點閱:107下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前已經有愈來愈多的學術應用與商務產業開始利用全球導航衛星系統進行定位、導航、校時的服務。而各類使用者對定位系統的定位效能的需求也相對提升。然而在都市高樓林立定位環境下,傳統的接收機設計時常會出現衛星訊號失鎖的情形或者受到多重路徑定位誤差。有鑑於此,一直以來有許多研究探討著如何設計出較為穩定的訊號追蹤演算法。傳統衛星訊號追蹤演算法使用電碼鎖相迴路與相位鎖相迴路對每一個衛星分別進行訊號追蹤,當成功追蹤後再將導航資訊傳遞給導航處理器進行使用者之定位。向量追蹤法不同於傳統衛星訊號追蹤法為其單使用一個迴路即可同時追蹤每一個衛星並同時估測使用者位置。此向量追蹤法之迴路為利用擴展卡曼濾波器(Extended Kalman filter, EKF)來進行估測,並且將每一個通道之鑑別器輸出值當作濾波器輸入觀測量,藉由所有衛星之鑑別器輸出,濾波器即可以成功估測使用者位置。向量追蹤法的優點為可以集中所有衛星訊號的強度進而增加濾波器增益值。正因為此種特性,向量追蹤法相當適合使用於低衛星訊號信噪比的環境中,而這也正是傳統衛星追蹤演算法較不能支援的環境。目前尚未有研究討論與評估向量追蹤法在多重路徑干擾環境下的效能,有鑑於此,本論文的第一個目標為分析向量追蹤法是否能力消減由多重路徑所造成的影響。為了增進向量追蹤法於消減多重路徑誤差的效能,本論文的第二個目標為提出一新的組合:向量追蹤法整合基於鑑別器設計的多重路徑消減演算法,並且評估其效能。其中,本論文所使用的向量追蹤迴路為向量電碼延遲鎖相迴路(vector delay lock loop, VDLL)而整合基於鑑別器設計的多重路徑消減演算法為頻閃相關器(Strobe correlator)。
    本論文首先使用直接訊號消減法進行兩種環境的模擬:訊號中斷與非視線訊號接收(non-line-of-sight reception)。此模擬的目的為驗證本論文研發的向量追蹤法確實具備有消減多重路徑干擾的能力。根據模擬結果顯示,向量追蹤法不但有能力在訊號中斷時繼續銜接並提供定位服務,並且也展現出偵測非視線訊號接收情形的潛力。接著本論文將嘗試於兩個不同的都市環境,台灣成功大學校區與日本東京市區,收集全球定位系統中頻訊號,並對向量追蹤法與本論文提出的新組合,向量追蹤法整合基於鑑別器設計的多重路徑消減演算法,進行測試。此實驗可以分為靜態實驗與動態實驗,兩個實驗皆可證明確實受到多重路徑干擾。根據實驗結果首先可以發現,相對於傳統追蹤迴路,向量追蹤迴路可以估測出更穩定並且準確的電碼頻率(code frequency)。這個特性可以減少多重路徑干擾對於向量追蹤迴路的影響,進而減少多重路徑所造成的定位誤差。另外,根據實驗定位結果顯示,將頻閃相關器整合於向量追蹤迴路可以進一步提高向量追蹤法消減多重路徑影響的能力。最後,本論文也發展一基於相關器設計的蒙地卡羅模擬器以對本文提出的新整合演算法進行接收機敏感度(receiver sensitivity)的檢測。模擬結果顯示,相對於整合頻閃相關器於傳統追蹤迴路,整合其於向量追蹤迴路可以獲得2.26 dB-Hz的增進。有鑑於上述之實驗與模擬結果,本論文總結向量追蹤迴路具備對於多重路徑干擾的抵抗力,並且此演算法不需要使用額外的感測器。

    This dissertation focuses on the application of the pedestrian positioning without external aiding in radio frequency difficult environments. Multipath interference and non-light-of-sight (NLOS) reception are major error sources when using Global Navigation Satellite System (GNSS) in an urban environment. Buildings and dense foliage reflect and diffract the signals, and receiver-based multipath and NLOS mitigation would be a strong candidate. Traditionally, this mitigation technique involves applications of different discriminator designs to mitigate multipath, and these discriminator designs can reduce the pseudorange multipath error when the receiver’s precorrelation bandwidth is sufficient. However, these discriminator design not only decrease the receiver’s sensitivity but also not helpful to mitigate NLOS reception at all. New approaches to multipath and NLOS mitigation are therefore needed. A promising approach to minimize the effect of multipath interference is the vector tracking loop. In comparison to the conventional tracking loop, the vector tracking loop replaces the delay lock loop (DLL) and the phase lock loop (PLL) with an Extended Kalman filter (EKF) to track the GNSS signals. This EKF of the vector tracking loop not only tracks the signals but also calculates the user positions. By combining the tracking and positioning tasks, the vector tracking loop can use the user motion determined from the stronger GNSS signal to predict the code phase and maintain lock of the weaker signals. The vector tracking loop also has the potential to mitigate the effects of multipath interference and NLOS reception. However, the degree to which this could be achieved has not yet being shown. Therefore, the first objective of this dissertation is to investigate the immunity against multipath effect generated by the vector tracking loop. The second objective is to maintain the multipath mitigation capability from the discriminator-based method and avoid the loss of sensitivity by proposing an integration scheme of the discriminator-based multipath mitigation technique and the vector-based tracking loop.
    In this dissertation, a Strobe correlator is used as the discriminator-based multipath mitigation algorithm and a vector delay lock loop (VDLL) is used as the vector tracking algorithm. This VDLL replaces the individual DLLs but retains conventional PLLs to separate the carrier phase of each signal. This work uses an 8-state EKF with adaptive tuning to estimate the user position and maintain code phase. The EKF’s adaptive tuning algorithm uses the variance of the measurement innovation to determine the assumed measurement noise covariance.
    This work adopts our Matlab-based GPS software-defined receiver as the research platform and implements the vector tracking algorithm. This work initially applies a signal cancellation method to simulate the scenarios of signal termination and the NLOS reception. The method can help to test the capabilities of the developed vector tracking loop. Then, it compares the positioning performance of the conventional and the vector tracking loops by means of a common set of the intermediate frequency (IF) signals recorded at the Tzu-Chang campus of the National Cheng Kung University and the urban canyon of Tokyo city. Both static and dynamic signals are collected in a challenging urban environment subject to multipath interference. Further, the comparison analyze of performance of the standalone conventional tracking (CT) method, the CT with Strobe correlator method, the standalone vector tracking (VT) method, and the VT with Strobe correlator method (the proposed combination) are presented in this dissertation.
    The experimental results show that the VT method generates more stable code numerical controlled oscillator (NCO) frequency than that of CT method does. This characteristic can reduce the impact of multipath interference which reflected in a smaller positioning error while using VT. According to the experiment results, the Strobe correlator further enhances the multipath mitigation ability of the vector tracking loop in terms of the position solutions as well as the capability to detect the multipath effects. Finally, a correlator-based Monte-Carlo simulator is developed to evaluate the proposed receiver architecture sensitivity. In comparison to the conventional tracking loop, the simulation results show that the proposed integration scheme is able to achieve a maximum 2.26 dB improvement in terms of the tracking threshold probability of 50% with seven satellites in view. In conclusion, the VT method provides resistance against multipath interference for a GPS receiver without any external aiding and hence its performance is further enhanced by the integration of the discriminator-based multipath mitigation algorithm.

    摘要 I ABSTRACT III 誌謝 XIII CONTENTS XIV LIST OF TABLES XVII LIST OF FIGURES XVIII LIST OF ACRONYMS/ABBREVIATIONS 1 CHAPTER Ⅰ INTRODUCTION 3 1.1 GNSS in Radio Difficult Environment 5 1.1.1 Multipath, Scattering, and NLOS reception 6 1.1.2 Introduction to Multipath Mitigation 8 1.2 GPS Software Defined Radio 10 1.2.1 Matlab-based GPS Software Receiver 10 1.2.2 Introduction to Vector Tracking 12 1.3 Literatures Review 14 1.4 Motivation and Objective 15 1.5 Dissertation Organization 17 CHAPTER Ⅱ GPS SOFTWARE RECEIVERS 19 2.1 Acquisition by Parallel Code Phase Space Search Method 19 2.2 Conventional Tracking Loop 22 2.2.1 Delay Lock Loop 23 2.2.2 Frequency and Phase Lock Loop 26 2.2.3 Complete Conventional Tracking Loop 28 2.2.4 Carrier to Noise Ratio (C/N0) Estimation 30 2.3 Multipath Mitigation Technique Based on Discriminator Design 32 2.3.1 Effects of Multipath on GPS Correlator Behavior 32 2.3.2 Multipath Mitigation Techniques 33 2.4 GPS Navigation Data Decode 39 2.4.1 Satellite Position and Velocity Estimation 39 2.4.2 Pseudorange and Pseudorange Rate Estimation 40 2.5 PVT Estimations 41 2.5.1. Error Models Selected 41 2.5.2 Computation of Receiver Position and Velocity 42 2.6 Summary 44 CHAPTER III VECTOR TRACKING LOOP 46 3.1 Comparison between Conventional and Vector Tracking Technique 46 3.2 Architecture of Vector Tracking Loop 50 3.2.1 Vector Delay Lock Loop 50 3.3 Tuning Algorithm of EKF 59 3.4 Implementation of Strobe Correlator into Vector Tracking 62 3.5 Equivalent Conventional Tracking Loop 63 3.6 Summary 66 CHAPTER IV PERFORMANCE ANALYSIS AND SENSITIVITY STUDY IN SIMULATED ENVIRONMENTS 67 4.1 Simulated Signal Distortion Environments 67 4.1.1 Direct Signal Cancellation Algorithm and its Verification 68 4.1.2 Simulated Signal Distortion Environments 69 4.2 Loss of Lock Performance Analysis 81 4.2.1 Design of Monte-Carlo Simulator 81 4.2.2 Tracking Probabilities in different number of satellites 84 4.3 Summary 88 CHAPTER V PERFORMANCE ANALYSIS IN THE PRESENCE OF MULTIPATH 90 5.1 Experiment in Multipath Environment (NCKU) 90 5.1.1 Experimental Setups 91 5.1.2 Performance Analysis of Static Experiment 94 5.1.3 Performance Analysis of Dynamic Experiment 98 5.2 Experiment in Urban Environments (Tokyo) 115 5.2.1 Experimental Setups 115 5.2.2 Performance Analysis of Static Experiment 119 5.3 Summary 128 CHAPTER VI DISCUSSIONS AND CONCLUSIONS 130 6.1 Discussions 130 6.2 Conclusions 132 6.3 Summary of Contributions 133 REFERENCE 136 VITA 141 PUBLICATION LIST 142 Peer Review Papers: 142 International Conference Paper: 142 Domestic Conference Paper: 144

    AKOS, D. M. & TSUI, J. B. Y. 1996. Design and implementation of a direct digitization GPS receiver front end. IEEE Transactions on Microwave Theory and Techniques, 44, 2334 - 2339
    BABU, R. & WANG, J. 2009. Ultra-tight GPS/INS/PL integration: a system concept and performance analysis. GPS Solutions, 13, 75-82.
    BENNETT, S. 1993. Development of the PID controller. Control Systems, IEEE, 13, 58-62.
    BHATTACHARYYA, S. & GEBRE-EGZIABHER, D. Integrity Analysis of Vector Tracking Architecture. Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010), September 2010 2010 Portland, Oregon. 3152-3166.
    BORRE, K., AKOS, D. M., BERTELSEN, N., RINDER, P. & JENSEN, S. H. 2007. A Software-Defined GPS and Galileo Receiver - A Single-Frequency Approach, New York, NY, Birkhäuser Boston.
    BRAASCH, M. S. 1996. Multipath Effects. In: PARKINSON, B. W. & SPILKER, J. J. (eds.) Global Positioning System: Theory and Applications. Washington, DC: AIAA.
    BRADBURY, J. Prediction of Urban GNSS Availability and Signal Degradation Using Virtual Reality City Models. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), September 2007 Fort Worth, TX. 2696-2706.
    BROWN, R. G. & HWANG, P. Y. C. 1997. Introduction to Random Signals and Applied Kalman Filtering, New York, N.Y., John Wiley & Sons.
    CONLEY, R., COSENTINO, R., HEGARTY, C. J., KAPLAN, E. D., LEVA, J. L., HAAG, M. U. D. & DYKE, K. V. 2006. Performance of Stand-Alone GPS. In: KAPLAN, E. D. & HEGARTY, C. J. (eds.) Understanding GPS: Principles and Application. 2 ed. Norwood, MA: Artech House Publishers.
    COPPS, E. M., GEIER, G. J., FIDLER, W. C. & GRUNDY, P. A. 1980. OPTIMAL PROCESSING OF GPS SIGNALS. Navigation: Journal of the Institute of Navigation, 27, 171-182.
    DIERENDONCK, A. J. V., FENTON, P. & FORD, T. 1992. Theory and Performance of Narrow Correlator Spacing in GPS Receiver. Navigation: Journal of the Institute of Navigation, 39, 265-283.
    EDWARDS, W. L., LASHLEY, M. & BEVLY, D. M. FPGA Implementation of a Vector Tracking GPS Receiver using Model-Based Tools. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), September 2009 2009 Savannah, GA. 273-280.
    GARIN, L., DIGGELEN, F. V. & ROUSSEAU, J.-M. Strobe & Edge Correlator Multipath Mitigation for Code. Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), September 1996 Kansas City, MO. 657-664.
    GOLD, R. 1967. Optimal binary sequences for spread spectrum multiplexing (Corresp.). IEEE Transactions on Information Theory, 13, 619-621.
    GROVES, P. D. 2013. Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems (GNSS Technology and Applications), Artech House Publishers.
    GROVES, P. D. & MATHER, C. J. 2010. Receiver Interface Requirements for Deep INS/GNSS Integration and Vector Tracking. Journal of Navigation, 63, 471-489.
    HEGARTY, C., TRAN, M. & BETZ, J. W. Multipath Performance of the New GNSS Signals. Proceedings of the 2004 National Technical Meeting of The Institute of Navigation, January 2004 San Diego, CA. 333-342.
    HSU, L.-T. & JAN, S.-S. 2011. Develop of Vector Tracking Loop in GNSS Software Defined Receiver. Proceedings of 2011 AASRC Conference. Taichung, Taiwan.
    HSU, L.-T., JAN, S. S., JUANG, J. C. & YANG, M. The Implementation of the Stanford WADGPS Master Station Algorithm in Taiwan Region. Proceedings of European Navigation Conference 2011, 30 Novmenber 2011 London, UK.
    HSU, L. T., JAN, S. S., SUN, C. C. & LIN, Y. C. A New Algorithm for the Signal Cancellation of GIOVE-A L1B & GPS L1 Signal. Proceedings of International Symposium on GPS/GNSS 2007, November 2007 Persada Johor, Malaysia.
    HSU, L. T., SUN, C. C. & JAN, S. S. Comparison of Acquisition and Tracking Methods for Software Receiver. Proceedings of 4th Asian Space Conference 2008, October 2008 Taipei, Taiwan.
    IS-GPS-200 2011. Navstar GPS Space Segment/Navigation User Interfaces. In: SECURITY, H. (ed.). El Segundo, CA.
    JAHN, A., BISCHL, H. & HEISS, G. Channel characterisation for spread spectrum satellite communications. IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996 Mainz. 1221-1226.
    JAN, S. S. & HSU, L. T. 2010. Assessment of Composite PRN Code Acquisition Methods for GPS Signal. Journal of the Chinese Society of Mechanical Engineers, 31, 47-54.
    JAN, S. S., HSU, L. T. & TSAI, W. M. 2010. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network. Sensors Journal, 10, 2957-2974.
    JIANG, Z. & GROVES, P. D. GNSS NLOS and Multipath Error Mitigation using Advanced Multi-Constellation Consistency Checking with Height Aiding. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), September 2012a Nashville, TN.
    JIANG, Z. & GROVES, P. D. 2012b. NLOS GPS signal detection using a dual-polarisation antenna. GPS Solutions.
    JWO, D.-J., CHEN, M.-Y. T., CHIEN-HAO & CHO, T.-S. 2009. Adaptive and Nonlinear Kalman Filtering for GPS Navigation Processing. In: MORENO, V. M. & PIGAZO, A. (eds.) Kalman Filter Recent Advances and Applications. Croatia: InTech.
    JWO, D.-J., YANG, C.-F., CHUANG, C.-H. & LIN, K.-C. 2012. A Novel Design for the Ultra-Tightly Coupled GPS/INS Navigation System. Journal of Navigation, 65, 717-747.
    KALMAN, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME – Journal of Basic Engineering, 82, 35-45.
    KAPLAN, E. D. 1996. Understanding GPS: Principles and Application.
    KAPLAN, E. D., LEVA, J. L., MIBERT, D. & PAVLOFF, M. S. 2006. Fundamentals of Satellite Navigation. In: KAPLAN, E. D. & HEGARTY, C. J. (eds.) Understanding GPS principles and applications. 2 ed. Norwood, MA: Artech House Publishers.
    KUBO, N., SUZUKI, T., YASUDA, A. & SHIBAZAKI, R. An Effective Method for Multipath Mitigation under Severe Multipath Environments. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), September 2005 2005 Long Beach, CA. pp. 2187-2194.
    LAMANCE, J., COLLINS, P. & LANGLEY, R. Limiting Factors in Tropospheric Propagation Delay Error Modelling for GPS Airborne Navigation. Proceedings of the 52nd Annual Meeting of The Institute of Navigation, June 1996 Cambridge, MA. 519-528.
    LASHLEY, M. & BEVLY, D. M. 2009. What are vector tracking loops, and what are their benefits and drawbacks? Inside GNSS. Eugene, Oregon: Gibbons Media and Research LLC.
    LASHLEY, M., BEVLY, D. M. & HUNG, J. Y. 2009. Performance Analysis of Vector Tracking Algorithms for Weak GPS Signals in High Dynamics. Selected Topics in Signal Processing, IEEE Journal, 3, 661-673.
    LASHLEY, M., BEVLY, D. M. & J.Y.HUNG. A Valid Comparison of Vector and Scalar Tracking Loops. Proceedings of IEEE/ION PLANS, May 2010 Indian Wells, CA. 464-474.
    LI, B., DEMPSTER, A. G. & RIZOS, C. 2010. Positioning in environments where GPS fails. Surveying & XXIV FIG Int. Congress. Sydney, Australia.
    LIN, D. M. & TSUI, J. B. Y. Comparison of Acquisition Methods for Software GPS Receiver. Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), September 2000 Salt Lake City, UT. 2385 - 2390.
    M. HERN NDEZ-PAJARES, J. M. J., J. SANZ, R. ORUS, A. GARCIA-RIGO, J. FELTENS, A. KOMJATHY, S. C. SCHAER, A. KRANKOWSKI 2009. The IGS VTEC maps: a reliable source of ionospheric information since 1998. Journal of Geodesy, 83, 263-275.
    MANNUCCI, A. J., WILSON, B. D., YUAN, D. N., HO, C. H., LINDQWISTER, U. J. & RUNGE, T. F. 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33, 565-582.
    MARKETSANDMARKETS 2011. Global GPS Market: Products (Marine, Aviation, Automotive, Outdoor/fitness & GPS Enabled Smart Phones), Applications (Navigation, Machine Control, & Logistics Tracking) & Geography (2011 - 2016).
    MCGRAW, G. A. & BRAASCH, M. S. GNSS Multipath Mitigation Using Gated and High Resolution Correlator Concepts. Proceedings of the 1999 National Technical Meeting of The Institute of Navigation, January 1999 San Diego, CA. 333-342.
    MCGRAW, G. A., YOUNG, R. S. Y., REICHENAUER, K., STEVENS, J. & VENTRONE, F. GPS Multipath Mitigation Assessment of Digital Beam Forming Antenna Technology in a JPALS Dual Frequency Smoothing Architecture. Proceedings of the 2004 National Technical Meeting of The Institute of Navigation, January 2004 San Diego, CA 561-572.
    MISRA, P. & ENGE, P. 2011. Global Positioning System: Signals, Measurements, and Performance, Lincoln, MA 01773 Ganga-Jamuna Press.
    NOVATEL-INC. 2013. SPAN-CPT Single Enclosure GNSS + INS Receiver Delivers 3D Position, Velocity and Attitude.
    OPPENHEIM, A. & SCH FER, R. 1999. Discrete-Time Signal Processing, Englewood Cliffs, NJ, Prentice-Hall.
    PANY, T., KANIUTH, R. & EISSFELLER, B. Deep Integration of Navigation Solution and Signal Processing. Proceedings of the 18th ION GNSS International Technical Meeting of the Satellite Division, 2005 Long Beach, CA.
    PARKINSON, B. W. 1996a. GPS Error Analysis. In: SPILKER, J. J. & PARKIONSON, B. W. (eds.) Global Positioning System: Theory and Applications. Washington DC: American Institute of Aeronautics.
    PARKINSON, B. W. 1996b. Introduction and Heritage of NAVSTAR, the Global Positioning System. In: PARKINSON, B. W. & SPILKER, J. J. (eds.) Global Positioning System: Theory and Applications. Washington, DC: AIAA.
    PETOVELLO, M. G. & LACHAPELLE, G. Comparison of Vector-Based Software Receiver Implementations With Application to Ultra-Tight GPS/INS Integration. Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 2006 Fort Worth, TX. 1790-1799.
    PRATT, A. R. Performance of Multi-path Mitigation Techniques at Low Signal to Noise Ratios. roceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), September 2004 Long Beach, CA. 43-53.
    PSIAKI, M. L. Block Acquisition of Weak GPS Signals in a Software Receiver. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), September 2001 2001 Salt Lake City, UT.
    RAMAKRISHNAN, S., GAO, G. X., LORENZO, D. D., AKOS, D., T.WALTER & ENGE, P. Design and analysis of reconfigurable embedded gnss receivers using model-based design tools. in Proceedings of the ION GNSS, September 2008 2008 Savannah, GA.
    RAO, B. & MINAKAKIS, L. 2003. Evolution of mobile location-based services. Communications of the ACM - Mobile computing opportunities and challenges. New York: Association for Computing Machinery (ACM).
    SAASTAMOINEN, J. 1972. Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105, 279-298.
    SCHAER, S. & GURTNER, W. 1998. IONEX: The IONosphere Map EXchange Format Vesion 1. Darmstadt, Germany: Astronomical Institute, University of Berne, Swizerland.
    SHARAWI, M. S., AKOS, D. M. & ALOI, D. N. 2007. GPS C/N0 estimation in the presence of interference and limited quantization levels. IEEE Transactions on Aerospace and Electronic Systems, 43, 227-238.
    SPILKER, J. J. 1996. Fundamentals of Signal Tracking Theory. In: PARKINSON, B. W. (ed.) Global Positioning System: Theory and Application. Washington DC: American Institute of Aeronautics.
    SUZUKI, T. 2013. GNSS-SDRLIB [Online]. Tokyo, Japan. Available: www.taroz.net/gnsssdrlib_e.html.
    TAYLOR, D. P. 2002. Introduction to "Synchronous Communications". Proceedings of the IEEE, 90, 1459 - 1460
    TORRIERI, D. J. 1984. Statistical Theory of Passive Location Systems. Aerospace and Electronic Systems, IEEE Transactions on, AES-20, 183-198.
    TOWNSEND, B. & FENTON, P. A Practical Approach to the Reduction of Pseudorange Multipath Errors in a Ll GPS Receiver. Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994), September 20 - 23 1994 Salt Lake City, UT. 143-148.
    TSUI, B.-Y. J. 2005. Fundamentals of Global Positioning System Receivers A Software Approach, Hoboken, New Jersey, John Wiley & Sons.
    VAN DIERENDONCK, A. J. 1996. GPS Receivers. In: PARKINSON, B. W. (ed.) Global Positioning System: Theory and Application. Washington DC: American Institute of Aeronautics.
    WARD, P. W., BETZ, J. W. & HEGARTY, C. J. 2006a. GPS Satellite Signal Characteristics. In: KAPLAN, E. D. & HEGARTY, C. J. (eds.) Understanding GPS: Principles and Applications. 2 ed. Norwood, MA: Artech House Publishers.
    WARD, P. W., BETZ, J. W. & HEGARTY, C. J. 2006b. Interference, Multipath, and Scintillation. In: E. D. KAPLAN, C. J. H. (ed.) Understanding GPS: Principles and Application. 2 ed. Norwood, MA: Artech House Publishers.
    WARD, P. W., BETZ, J. W. & HEGARTY, C. J. 2006c. Satellite Signal Acquisition, Tracking, and Data Demodulation. In: E. D. KAPLAN, C. J. H. (ed.) Understanding GPS: Principles and Application. 2 ed. Norwood, MA: Artech House Publishers.
    ZHAO, S. & AKOS, D. M. An Open Source GPS/GNSS Vector Tracking Loop - Implementation, Filter Tuning, and Results. Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, 2011 San Diego, CA. 1293-1305.
    ZHDANOV, A., VEITSEL, V., ZHODZISHSKY, M. & ASHJAEE, J. Multipath Error Reduction in Signal Processing. Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999),, September 1999 Nashville, TN. 1217-1224.

    無法下載圖示 校內:2015-01-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE