簡易檢索 / 詳目顯示

研究生: 王瑋禎
Wang, Wei-Chen
論文名稱: 細胞自噬經由轉錄因子FOXO1正向調控miR-449a進而抑制大腸直腸癌細胞LEF-1之表現
Autophagy suppresses colorectal cancer cell LEF-1 expression through FOXO1 mediated upregulation of miR-449a
指導教授: 劉校生
Liu, Hsiao-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 細胞自噬p300FOXO1miR-449a大腸直腸癌
外文關鍵詞: autophagy, p300, FOXO1, miR-449a, colorectal cancer
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞自噬現象藉由降解老化或損壞的胞器,將能量重新釋出以維持細胞的恆定。不規律的細胞自噬可能造成癌症產生。MicroRNAs (miRNAs)是一種非編碼的核醣核酸,可以影響基因的表現。MiRNA 在癌症的過程中扮演重要角色,並調控細胞增生,細胞週期,分化,轉移等等進而影響腫瘤生成。過去的研究著重關於miRNA如何調控細胞自噬反應,但在腫瘤生成過程之中較少研究細胞自噬反應如何調控miRNA。實驗室先前研究發現在誘發細胞自噬反應情況下,miR-449a 表現量最高;此外,在大腸直腸癌檢體中也發現,miR-449a與復發和轉移呈現負相關。利用Amiodarone(原抗心律不整藥物)為誘導劑誘發細胞自噬反應並伴隨miR-449a大量表現及抑制大腸癌細胞SW480之爬行,增生及腫瘤形成。上述結果顯示低落的細胞自噬反應及miRNA表現與大腸直腸癌之形成有關。本研究進一步了解細胞自噬正向調控miR-449a表現之機制。在72對大腸直腸癌病人檢體中,細胞自噬反應活性及miR-449a表現量均較低落,miR-449a 標的基因LEF-1的表現則相對較高。為了瞭解細胞自噬,miR-449a之間關係以及他們對於腫瘤生成之影響,我們以amiodarone誘導劑誘發大腸直腸癌細胞SW480細胞自噬反應及miR-449a表現。本研究發現細胞自噬藉轉錄因子FOXO1結合在啟動子上正向調控miR-449a之表現。Fukamizu et al.報導當FOXO1被p300蛋白乙醯化時,其與DNA結合的能力和轉錄活性會減少,並且p300的大量表現與大腸直腸癌預後不佳有關係。本研究發現誘發細胞自噬反應時p300的表現下降,因此我們推論在大腸直腸癌當中miR-449的表現低落是由於p300的大量表現並且乙醯化FOXO1,使得FOXO1轉錄因子無法進入細胞核中正向調控miR-449a表現。總結,本篇研究揭示大腸直腸癌中細胞自噬經由降解p300蛋白質促使轉錄因子FOXO1正向調控miR-449a之表達,因此影響標的基因LEF-1之表現,最後抑制癌症之進程。

    Autophagy maintains cellular homeostasis through recruitment and degradation of accumulated and dysfunctional materials in the cell. Aberrant autophagy can cause diseases including tumorigenesis. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate gene expression. MiRNAs play a key role in cancer progression and control cell proliferation, cell cycle, differentiation, metastasis et al to affect tumor growth. Recent studies focus on miRNA in regulation of autophagy processes. However, few studies focus on autophagy regulation of miRNAs, especially in tumorigenesis. We previously showed that miR-449a is the most up-regulated miRNA under autophagy induced conditions and the expression of miR-449a was inversely correlated with recurrence and metastasis of the colorectal cancers (CRC). Furthermore, amiodarone (an antiarrhythmic drug) induced autophagy up-regulates miR-449a to suppress the cell migration, invasion, proliferation, colony formation and tumor formation of CRC cells SW480. Above data indicate that reduced autophagy and miRNA contribute to the tumorigenesis of CRC. This study intends to the underlying mechanism of autophagy regulation of miR-449a. In 72 paired CRC patient specimens, the autophagy activity and miR-449a were lower in the tumor part. In addition, the target gene of miR-449a, LEF-1 was up-regulated in CRC. To clarify the relationship between autophagy and miR-449a and their effects on tumorigenesis, amiodarone, an antianginal and antiarrhythmic drug, was used to induce autophagy, and miR-449a expression was induced in colon cancer SW480 cells. Furthermore, we reveal that autophagy up-regulates miR-449a through FOXO1 at the transcription level and further down-regulates its target gene. Fukamizu et al. reported that p300-mediated acetylation of FOXO1 reduces its DNA-binding affinity and transcription activity, and overexpression p300 correlates with poor prognosis of colorectal cancer. Here, we demonstrated that autophagy may down-regulate the expression of p300 through a degradation pathway, indicating that miR-449a down expression in CRC may be regulated by overexpression of p300 which further acetylates FOXO1. In summary, our findings indicate that autophagy regulates miRNA expression through promoting its transcription and further affects its target gene in CRC.

    中文摘要 I Abstract III 誌謝 V Abbreviation X Chapter 1 Introduction 1 1.1 Autophagy and tumorigenesis 1 1.2 MiRNAs and tumorigenesis 2 1.3 Autophagy and miRNAs 3 1.4 Colorectal cancer (CRC) 4 1.5 Specific aim 5 Chapter 2 Materials and Methods 6 2.1 Cell lines and reagents 6 2.2 Tissue specimens 6 2.3 Quantitative real-time PCR (qRT-PCR) 7 2.4 Western blot analysis 8 2.5 Immunofluorescent staining 9 2.6 Plasmid constructs 10 2.7 Luciferase reporter assay 10 2.8 Immunohistochemistry (IHC) 11 2.10 Chromatin immunoprecipitation (ChIP) assay 13 2.11 Statistical analysis 14 Chapter 3 Results 15 3.1 The relationship among autophagy, miR-449a and target genes 15 3.2 Autophagy up-regulates miR-449a expression at the transcription or translation level 16 3.3 Autophagy affects the transcriptional activity of FOXO1 through post-translational modification 20 3.4 Low autophagic activity and low miR-449a expression correlate with high LEF-1 expression in patient specimens and CRC cell lines 21 Chapter 4 Discussion 24 References 29 Curriculum Vitae 61

    1. Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 2009;1793:664-73.
    2. Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta 2009;1793:1516-23.
    3. Kisen GO, Tessitore L, Costelli P, et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis 1993;14:2501-5.
    4. Brech A, Ahlquist T, Lothe RA, et al. Autophagy in tumour suppression and promotion. Mol Oncol 2009;3:366-75.
    5. Avalos Y, Canales J, Bravo-Sagua R, et al. Tumor suppression and promotion by autophagy. Biomed Res Int 2014;2014:603980.
    6. Wu SY, Lan SH, Cheng DE, et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 2011;13:1171-82.
    7. Li X, Xu HL, Liu YX, et al. Autophagy modulation as a target for anticancer drug discovery. Acta Pharmacol Sin 2013;34:612-24.
    8. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009;11:228-34.
    9. Wang X. Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 2014;30:1377-83.
    10. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009;4:199-227.
    11. Li H, Yang BB. Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 2013;34:870-9.
    12. Michael MZ, SM OC, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003;1:882-91.
    13. Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009;5:816-23.
    14. Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis 2012;33:2018-25.
    15. Jing Z, Han W, Sui X, et al. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 2015;356:332-8.
    16. Lan SH, Wu SY, Zuchini R, et al. Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 2014;59:505-17.
    17. Purandare NC, Dua SG, Arora A, et al. Colorectal cancer - patterns of locoregional recurrence and distant metastases as demonstrated by FDG PET / CT. Indian J Radiol Imaging 2010;20:284-8.
    18. Tenbaum SP, Ordonez-Moran P, Puig I, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012;18:892-901.
    19. Longley DB, Allen WL, Johnston PG. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta 2006;1766:184-96.
    20. Wu JS. Rectal cancer staging. Clin Colon Rectal Surg 2007;20:148-57.
    21. Singh BN. Amiodarone: a multifaceted antiarrhythmic drug. Curr Cardiol Rep 2006;8:349-55.
    22. Balgi AD, Fonseca BD, Donohue E, et al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 2009;4:e7124.
    23. Paik S, Jung HS, Lee S, et al. miR-449a regulates the chondrogenesis of human mesenchymal stem cells through direct targeting of lymphoid enhancer-binding factor-1. Stem Cells Dev 2012;21:3298-308.
    24. Wang WJ, Yao Y, Jiang LL, et al. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013;8:e76596.
    25. Kang R, Zeh HJ, Lotze MT, et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571-80.
    26. Bjorkoy G, Lamark T, Pankiv S, et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009;452:181-97.
    27. Yang X, Feng M, Jiang X, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 2009;23:2388-93.
    28. Lu H, Liu P, Pan Y, et al. Inhibition of cyclin-dependent kinase phosphorylation of FOXO1 and prostate cancer cell growth by a peptide derived from FOXO1. Neoplasia 2011;13:854-63.
    29. Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012;44:33-45.
    30. Maekawa T, Maniwa Y, Doi T, et al. Expression and localization of FOXO1 in non-small cell lung cancer. Oncol Rep 2009;22:57-64.
    31. Nagashima T, Shigematsu N, Maruki R, et al. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol Pharmacol 2010;78:961-70.
    32. Daitoku H, Sakamaki J, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim Biophys Acta 2011;1813:1954-60.
    33. Huh JW, Kim HC, Kim SH, et al. Prognostic impact of p300 expression in patients with colorectal cancer. J Surg Oncol 2013;108:374-7.
    34. van der Heide LP, Smidt MP. Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 2005;30:81-6.
    35. Yang ZJ, Chee CE, Huang S, et al. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011;10:1533-41.
    36. Luo W, Huang B, Li Z, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PLoS One 2013;8:e64759.
    37. Chen Z, Li Y, Zhang C, et al. Downregulation of Beclin 1 and impairment of autophagy in a small population of colorectal cancer. Dig Dis Sci 2013;58:2887-94.
    38. Yao Y, Ma J, Xue Y, et al. MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 2015;9:640-56.
    39. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86.
    40. Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J 2012;18:244-52.
    41. Chen S, Dai Y, Zhang X, et al. Increased miR-449a expression in colorectal carcinoma tissues is inversely correlated with serum carcinoembryonic antigen. Oncol Lett 2014;7:568-572.
    42. Abdelnour-Berchtold E, Cerantola Y, Roulin D, et al. Rapamycin-mediated FOXO1 inactivation reduces the anticancer efficacy of rapamycin. Anticancer Res 2010;30:799-804.
    43. Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010;12:665-75.
    44. Hariharan N, Maejima Y, Nakae J, et al. Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ Res 2010;107:1470-82.
    45. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014;2014:925350.
    46. Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 2005;102:11278-83.
    47. Wondisford AR, Xiong L, Chang E, et al. Control of Foxo1 gene expression by co-activator P300. J Biol Chem 2014;289:4326-33.
    48. Wang T, Liu H, Ning Y, et al. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells. PLoS One 2014;9:e102117.
    49. Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010;12:836-41.
    50. Schreiber A, Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta 2014;1843:163-81.
    51. Chen J, Halappanavar S, Th' ng JP, et al. Ubiquitin-dependent distribution of the transcriptional coactivator p300 in cytoplasmic inclusion bodies. Epigenetics 2007;2:92-9.
    52. Wang WJ, Yao Y, Jiang LL, et al. Increased LEF1 expression and decreased Notch2 expression are strong predictors of poor outcomes in colorectal cancer patients. Dis Markers 2013;35:395-405.

    下載圖示 校內:2025-02-05公開
    校外:2025-02-05公開
    QR CODE