| 研究生: |
葉俊杰 Yeh, Chun-Chieh |
|---|---|
| 論文名稱: |
鎳基奈米粒子/還原氧化石墨烯奈米複合材料的製備與觸媒特性 Preparation and catalytic properties of Ni-based nanoparticles/reduced graphene oxide nanocomposites |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 還原氧化石墨烯 、鎳奈米粒子 、磁性可回收觸媒 、近紅外光光熱轉換 、可見光光觸媒 |
| 外文關鍵詞: | Ni nanoparticle, reduced graphene oxide, magnetic recoverable catalyst, near infrared photothermally enhancement, visible light photocatalyst |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關鎳/還原氧化石墨烯(Ni/rGO)與硫化鎳/還原氧化石墨烯(NiS/rGO)奈米複合物之製備及觸媒應用。由於鎳奈米粒子的磁性與觸媒特性及還原氧化石墨烯的高比表面積與與優異的近紅外光光熱轉換特性,Ni/rGO被發展為一具有近紅外光增強催化活性之磁性可回收觸媒。藉由聯胺還原法,在乙二醇系統中可將鎳離子與氧化石墨烯童時還原形成Ni/rGO。所得Ni/rGO含有約62 wt%約鎳金屬奈米粒子,接近超順磁,且具有催化硼氫化鈉還原對硝基苯酚產生對胺基苯酚之良好觸媒活性。其擬一階速率常數隨著反應溫度與對硝基苯酚初濃度增加而增加,顯示其活化能為43.7 kJ/mol且rGO具有引起共乘效應之功效。更者,在近紅外光的照射下,Ni/rGO可因rGO的光熱轉換效應於鎳奈米粒子周遭形成局部升溫效應,進而有效提高還原速率。此外,藉著與硫化鈉反應,Ni/rGO可成功轉化成NiS/rGO,作為降解亞甲基藍之良好可見光光觸媒。其擬一階速率常數較使用NiS、rGO、及S/GO作為光觸媒時明顯為高,可能是rGO良好的電子傳遞特性與共乘效應所致,證實NiS/rGO確實具有降解亞甲基藍之良好光觸媒活性。
This thesis concerns the fabrication and catalytic application of nickel/reduced graphene oxide (Ni/rGO) and nickel sulfide/reduced graphene oxide (NiS/rGO). Ni/rGO has been developed as a magnetic recoverable catalyst with near-infrared (NIR) photothermally enhanced activity owing to the magnetic and catalytic properties of Ni nanoparticles as well as the large specific surface area and excellent NIR photothermal conversion property of rGO. By the hydrazine reduction in ethylene glycol, Ni ions and graphene oxide were reduced simultaneously to form the Ni/rGO. The resulting Ni/rGO with about 62 wt% of Ni nanoparticles was nearly superparamagnetic and possessed good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with sodium borohydride. The corresponding pseudo-first-order rate constants increased with increasing the temperature and 4-NP concentration, revealing the synergistic effect of rGO. Furthermore, under NIR irradiation, it was demonstrated that the Ni/rGO could efficiently enhance the reduction rate via the photothermal conversion. In addition, by the reaction with sodium sulfide, Ni/rGO could be successfully transferred to NiS/rGO as a good visible-light photocatalyst for the degradation of methylene blue. The corresponding pseudo-first-order rate constant was significantly higher than those using NiS, rGO, and S/rGO as the photocatalysts. This might be due to the good electron transfer property and synergistic effect of rGO, and demonstrated that NiS/rGO indeed had good photocatalytic activity for the degradation of methylene blues.
1. A.K. Geim, K.S. Novoselov, The rise of grapheme, Nat. Mater., 6 , 183–191 (2007).
2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Eletric field effect in atomically thin carbon films, Science, 306, 666–669 (2004).
3. A.Y. Serov, Z.Y. Ong, E. Pop, Effect of grain boundaries on thermal transport in graphene, Appl. Phys. Lett., 102, 033104 (2013).
4. S. Stankovich, D.A. Dikin, G. H. B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner1, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442, 282–286 (2006).
5. C.C. Huang, C. Li, G.Q. Shi, Graphene based catalysts, Energy Environ. Sci., 5, 8848–8868 (2012).
6. Lerf, A., He, H., Forster, M. & Klinowski, J., Structure of graphite oxide revisited, J. Phys. Chem. B, 102, 4477–4482 (1998).
7. G.M. Wang, F. Qian, C.W. Saltikov, Y.Q. Jiao, Y. Li, Microbial reduction of graphene oxide by shewanella, Nano Res., 4, 563–570 (2011).
8. 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33, 163-167 (2011).
9. G. Eda and M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics, Adv. Mater., 22, 2392–2415 (2010).
10. J.B. Wu, M. Agrawal, H.A. Becerril, Z.N. Bao, Z.F. Liu, Y.S. Chen , P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 4, 43–48 (2010).
11. G.Eda, Y.Y Lin, S. Miller, C.Wi Chen, W.F. Su, M. Chhowalla, Transparent and conducting electrodes for organic electronics from reduced graphene oxide, Phys. Lett., 92, 233305 (2008).
12. X.Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8, 323–327 (2008).
13. C.C. Huang, H. Bai, C. Lia, G.Q. Shi, A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents, Chem. Commun., 47, 4962–4964 (2011).
14. R. Muszynski, B. Seger, P.V. Kama, Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C, 112, 5263–5266 (2008).
15. Z. Xiong, L.L. Zhang, J. Ma, X. S. Zhao, Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation, Chem. Commun., 46, 6099–6101 (2010).
16. Y. Zhang, X. Yuan, Y. Wang, Y. Chen, One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline, J. Mater. Chem., 22, 7245–7251 (2012).
17. M.S. Zhu, P.L. Chen, M.H. Liu, Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst, ACS Nano, 5, 529–4536 (2011).
18. Z. Xiong, L.L. Zhang, X. S. Zhao, Visible-light-induced dye degradation over copper-modified reduced graphene oxide, Chem. Eur. J., 17, 2428–2434 (2010).
19. P. Mondal, A. Sinha, N. Salam, A. S. Roy, N. R. Jana, S. M. Islam, Enhanced catalytic performance by copper nanoparticle–graphene based composite, RSC Adv., 3, 5615–5623 (2013).
20. G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc., 131, 8262–8270 (2009).
21. H.W. Ha, I.Y. Kim, S.J. Hwang, R.S. Ruoff, One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cell, Electrochem. Solid-State Lett., 14, B70–B73 (2011).
22. Z.Y. Jia, X.P. Shena, Y. Song, G.X. Zhua, In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties, Mater. Sci. Eng. B, 176, 711–715 (2011).
23. G. Liu, Y.J. Wang, F.Y. Qiu, L. Li, L.F. Jiao, H.T. Yuan, Synthesis of porous Ni@rGO nanocomposite and its synergistic effect on hydrogen sorption properties of MgH2, J. Mater. Chem., 22, 22542–22549 (2012).
24. N. Zhang, Y.H. Zhang, X.Y. Pan, X.Z. Fu, S.Q. Liu, Y.J. Xu, Assembly of CdS nanoparticles on the two- dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions, J. Phys. Chem. C, 115, 23501–23511 (2011).
25. Ö. Metin, S. F. Ho, C. Alp, H. Can, M. N. Mankin, M.S. Gültekin, M. F. Chi, S.H. Sun, Ni/Pd core/shell nanoparticles supported on grapheme as a highly active and reusable catalyst for Suzuki–Miyaura cross-coupling reaction, Nano Res., 6, 10–18 (2013).
26. H.I. Kim, G.H. Moon, D. Monllor-Satoca, Y. Park, W.Y. Choi, Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet, J. Phys. Chem. C, 116, 1535–1543 (2012).
27. Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen, H.J. Dai, TiO2 Nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Res., 3, 701–705 (2010).
28. Y.T. Qua, Y.Z. Gao, F.D. Kong, S. Zhang, L. Du, G.P. Yin, Pt-rGO-TiO2 nanocomposite by UV- photoreduction method as promising electrocatalyst for methanol oxidation, Int J. Hydrogen Energy, 38, 12310–12317 (2013).
29. Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity, J. Phys. Chem. C, 116, 8111−8117 (2012).
30. B.W. Wang, Q.M. Sun, S.H. Liu, Y.P. Li, Synergistic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting, Int J. Hydrogen Energy, 38, 7232–9240 (2013).
31. Y.S. Fu, H.Q. Chen, X.Q. Sun, X. Wang, Graphene-supported nickel ferrite: a magnetically separable photocatalyst with high activity under visible light, AIChE Journal, 58, 3298–3305 (2012).
32. Z. Yang, Z. Yao, G. Li, G.Y. Fang, H.G. Ni, Z. Liu, X.M. Zhou, X.A. Chen, S Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS Nano, 1, 205–211 (2012).
33. Ullah. K, Ye. S, S. S, Z. Lei, Z.D. Meng, W.C. Oh, Photocatalytic degradation of methylene blue by NiS2-graphene supported TiO2 catalyst composites, Asian J. Chem., 15, 7335–7340 (2013).
34. A. Rahimi, A. Schmidt, A cyclobutene-1,2-bis(imidazolium) salt as efficient precursor of palladium-catalyzed room-temperature Suzuki-Miyaura reactions, Synlett, 3, 1327–1330 (2010).
35. Z.V. Feng, J.L. Lyon, J.S. Croley, R.M. Crooks, D.A.V. Bout, K.J. Stevenson, J. Chem. Educ., 86, 368 (2009).
36. J.J. Qi, W.P. Lv, G.H. Zhang, Y. Li, G.L. Zhang, F.B. Zhang, X.B. Fan, A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors, Nanoscale, 5, 6275–6279 (2013).
37. S. Bai, X.P. Shen, G.X. Zhu, M.Z. Li, H.T. Xi, K.M. Chen, In situ Growth of NixCo100−x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties, ACS Appl. Mater. Interfaces, 4, 2378−2386 (2012).
38. B.J. Li, H.Q. Cao, J.F. Yin, Y.M, A. Wu, J.H. Warner, Synthesis and separation of dyes via Ni@reduced graphene oxide nanostructures, J. Mater. Chem., 22, 1876–1883 (2012).
39. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H.H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water, Adv. Funct. Mater., 20, 2255–2262 (2010).
40. J. Zhang, J.Q. Yu, M. Jaroniec, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2‑production performance, Nano Lett., 12, 4584–4589 (2012).
41. S.X. Min and G.X. Lu, Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction, J. Phys. Chem. C, 115, 13938–13945 (2011).
42. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C, 115, 7355–7363 (2011).
43. S.S. Lee, H.W. Bai, Z.Y. Liu, D.D. Sun, Optimization and an insightful properties-activity study of electrospun TiO2/CuO composite nanofibers for efficient photocatalytic H2 generation, Appl. Cat. B, 140-141, 68– 81 (2013).
44. Z.Y. Ji, X.P. Shen, G.X. Zhu, Hu Zhou, A. Yuan, Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties, J. Mater. Chem., 22, 3471–3477 (2011).
45. G. Liu, Y.J. Wang, F.Y. Qiu, L. Li, L.F. Jiao, H.T. Yuan, Synthesis of porous Ni@rGO nanocomposite and its synergistic effect on hydrogen sorption properties of MgH2, J. Mater. Chem., 22, 22542–22549 (2012).
46. W.D. Qu, H.M. Bao, L.Y. Zhang, G. Chen, Far-infrared- assisted preparation of a graphene–nickel nanoparticle hybrid for the enrichment of proteins and peptides, Chem. Eur. J., 18, 15746–15752 (2012).
47. Y. Zhang, X.P. Xiao, Y.J. Sun, Y. Shi, H.C. Dai1, P.J. Ni, J.T. Hu, Z. Li, Y.H. Song, Li. Wang, Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing, Electroanalysis, 25, 959 – 966 (2013).
48. E.L. Guerra, A.M. Shanmugharaj, W.S. Choi, S.H. Ryu, Thermally reduced graphene oxide-supported nickel catalyst for hydrogen production by propane steam reforming, Appl. Cat. A, 468 , 467–474 (2013).
49. T.T. Chen, F. Deng, J. Zhu, C.F. Chen, G.B. Sun, S.L. Ma, X.J. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties, J. Mater. Chem., 22, 15190–15197 (2012).
50. L.R. Zhang, J. Zhao, M. Li, H.T. Ni, J.L. Zhang, Xi.M. Feng, Y.W. Ma, Q.L. Fan, X.Z. Wang, Z. Hub, W. Huang, Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium, New J. Chem., 36, 1108–1113 (2012).
51. M.S. Wu, Y.P. Lin, C.H. Lin, J.T. Lee, Formation of nano-scaled crevices and spacers in NiO-attached grapheme oxide nanosheets for supercapacitors, J. Mater. Chem., 22, 2442–2448 (2012).
52. Z.H. Wang, Y.L. Du, F.Y. Zhang, Z.X. Zheng, Y.Z. Zhang, Chunming Wang, High electrocatalytic activity of non-noble Ni-Co/grapheme catalyst for direct ethanol fuel cells, J Solid State Electrochem., 17, 99–107 (2013).
53. C.C. Yeh, D.H. Chen, Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity, Appl. Cat. B, 150-151, 298–304 (2014).
54. J.H. Kim, B.W. Lavin, B.W. Boote, J.A. Pham, Photothermally enhanced catalytic activity of partially aggregated gold nanoparticles, J Nanopart Res., 14, 995 (2012).
55. X.Z. Li, K.L. Wu, Y. Yea, X.W. Wei, Gas-assisted growth of boron-doped nickel nanotube arrays: rapid synthesis, growth mechanisms, tunable magnetic properties, and super-efficient reduction of 4-nitrophenol, Nanoscale, 5, 3648–3653 (2013).
56. Y.J. Peng, X. Wu, L.H. Qiu, C.H. Liu, S.D. Wang, F. Yan, Synthesis of carbon–PtAu nanoparticle hybrids originating from triethoxysilane-derivatized ionic liquids for methanol electrooxidation and the catalytic reduction of 4-nitrophenol, J. Mater. Chem. A, 1, 9257–9263 (2013).
57. A.H. Gordilloa, M. Arroyo, R. Zanella, V.R. González, Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol–gel method, J. Hazard. Mater., 268, 84–91 (2014).
58. B. Mu, Q. Wang, A. Wang, Preparation of magnetic attapulgite nanocomposite for the adsorption of Ag+ and application for catalytic reduction of 4-nitrophenol, J. Mater. Chem. A, 24, 7083–7890 (2013).
59. Z.Y. Zhang, C.G. Shao, Y.Y. Sun, J.B. Mu, M.Y. Zhang, P. Zhang, Z.C. Guo, P.P. Liang, C.H. Wang , Y.C. Liu, Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, J. Mater. Chem., 22, 1387–1395 (2012).
60. Z.D. Pozun, S.E. Rodenbusch, E. Keller, K. Tran, W.J. Tang, K.J. Stevenson, G. Henkelman, A systematic investigation of p‑nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles, J. Phys. Chem. C, 117, 7598−7604 (2013).
61. H.T. Wang, Z.X. Dong, C.Z. Na, Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p‑nitrophenol, ACS Sustainable Chem. Eng., 1, 746−752 (2013).
62. 張文吉,兼具近紅外光上轉換螢光顯影與光熱治療功能之NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料的製備, 國立成功大學化學工程學系碩士論文 (2013).
63. J.T. Robinson, S.M. Tabakman, Y. Liang, H.L. Wang, H.S. Casalongue, D.Vinh, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc., 133, 6825–6831 (2011).
64. 林郁人,六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換與催化特性, 國立成功大學化學工程學系碩士論文 (2010).
65. 陳誦英, 陳平, 李永旺, 王建國, 催化反應動力學, 化學工業出版社(2006).
66. H. Scott Fogler, Elements of chemical reaction engineering, Pearson Education Inc. (2008).
67. 高文弘, 陳振夏, 非均勻系觸媒化學的原理與應用, 黎明書店 (1976).
68. Q.H. Liang, Y. Shi, W.J. Ma, Z. Li, X.M. Yang, Enhance photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets, Phys. Chem. Chem. Phys., 14, 15657–15665 (2012).
69. M.I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic systems, Appl. Cat. B, 23, 89–114 (1999).
70. P. Wang, B.B. Huang, Y. Dai, M.H. Whang, Plasmonic photocatalysts:harvesting visible light with noble metal nanoparticles, Phys. Chem. Chem. Phys., 14, 9813–9825 (2012).
71. X.T. Gan, K.F. Mak, Y.D. Gao, Y.E. You, F. Hatami, J. Hone, T.F. Heinz, D. Englund, Strong enhancement of light−matter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett., 12, 5626–5631 (2012).
72. 翁任賢, 揭開神奇材料的面紗-石墨烯(Graphene), 奈米科學網 (2013).
73. M. A. H. Vozmediano, M. I. Katsnelson, F. Guinea, Gauge fields in grapheme, Physics Reports, 496, 109–148 (2010).
74. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of grapheme, Rev. Mod. Phys., 81, 109-162 (2009).
75. K. J. Tielrooij, J.C.W. Song, S.A. Jensen , A. Centeno, A. Pesquera, A.Z. Elorza, M. Bonn, L.S. Levitov, F.H.L. Koppens, Photoexcitation cascade and multiple hot-carrier generation in grapheme, Nature Physics, 9, 248–252 (2013).
76. 林新欽, 三五族半導體材料的載子與自旋動力學, 國立交通大學應用化學系碩士論文 (2013).
77. Y.G. Wu, M. Wen, Q.S. Wu, H. Fang, Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol, J. Phys. Chem. C, 118, 6307−6313 (2014).
78. J.R. Chiou, B.H. Lai, K.C. Hsu, D.H. Chen, One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction, J. Hazard. Mater., 248–249, 394–400 (2013).
79. Y.W. Zhang, S. Liu, W.B. Lu, L. Wang, J.Q. Tian, X.P. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catal. Sci. Technol., 1, 1142–1144 (2011).
80. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49, 741–772 (2011).
81. J. Li, C.Y. Liu,Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol, J. Mater. Chem., 22, 8426–8430 (2012).
82. X.J. Wu, X.C. Zeng, Periodic graphene nanobuds, Nano Lett., 9, 250–256 (2009).
83. Y.S. Fu, H.Q. Chen, X.Q. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis, Appl. Cat. B, 111-112, 280– 287 (2012).
84. D.V. Goia and E. Matijević, Preparation of monodispersed metal particles, New J. Chem., 22, 1203– 1215 (1998).
85. H. Bonnemann, W. Brijoux, Advanced catalysts and nanostructured materials, Academic Press, (1996).
86. G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. controllable chemistry leading to nanoscale metal and metal boride particles, Langmuir, 10, 4726 –4730 (1994).
87. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nature Chem., 2, 581–587 (2010).
88. K. P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chem., 2, 1015–1024 (2010).
校內:2019-07-16公開