簡易檢索 / 詳目顯示

研究生: 陳怡靜
Chen, Yi-Jing
論文名稱: 利用一氧化碳奈米藥物傳遞系統影響粒線體功能進行放射動力癌症治療
Carbon Monoxide (CO) Nano-drug Delivery System for Cancer Radiodynamic Therapy via Affecting Mitochondrial Function
指導教授: 王應然
Wang, Ying-Jan
共同指導教授: 廖美儀
Liao, Mei-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 76
中文關鍵詞: 乳腺癌放射動力治療一氧化碳金銀合金粒線體功能人源腫瘤異種移植動物模型
外文關鍵詞: Breast Cancer, Radiodynamic Therapy, Carbon Monoxide, Gold-silver Alloy, Mitochondrial Function, Orthotopic Patient-derived Tumor Xenograft Model
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳腺癌佔所有癌症的 11.7%,並且導致癌症死亡總數 6.9%,仍是全世界女性中最常被診斷出的癌症和癌症死亡的主要原因。病患最常接受放射治療,但是高劑量放射線會導致嚴重的副作用。此外,三陰性乳腺癌標準治療方法為化療,但是約 80%患者沒有產生完整療效。因此,近期研究提出放射動力療法進行改善。本研究的目的為設計一氧化碳奈米藥物傳遞系統,並將其合併放射線,利用放射動力的方式釋放一氧化碳進行癌症治療,最後進一步了解一氧化碳對粒線體功能的影響。以具有光電效應的奈米金銀合金作為載體材料,並在奈米金銀合金上裝載一氧化碳釋放分子五羰基鐵(Iron pentacarbonyl, Fe(CO)5),由放射線照射活化後釋放一氧化碳至組織和細胞中。使用 MTT 選擇生物安全性較高的奈米載體材料;使用肌紅蛋白測定法選擇一氧化碳產生較多的奈米藥物;使用穿透式電子顯微鏡等儀器觀察一氧化碳奈米藥物傳遞系統的物化特性。在動物實驗中,以原位人源腫瘤異種移植動物模型(Patient derived tumor xenograft model, PDX model),在重度免疫不全小鼠乳脂墊中原位植入人源性乳腺癌腫瘤組織,確認一氧化碳奈米藥物傳遞系統進行放射動力癌症治療之效力。在細胞實驗中,利用人類乳腺癌細胞 MDA-MB-231 進行相關分析,使用台盼藍(Trypan blue)計算細胞存活率;使用螢光染色分析粒線體中活性氧(mtROS)及膜電位的變化,以及自噬作用的改變;使用西方墨點法分析蛋白表達的調控。結果顯示成功合成一氧化碳奈米藥物傳遞系統,並可經由放射線活化釋放一氧化碳,在動物活體中原位人源乳腺癌腫瘤生長被抑制。在細胞中使粒線體中 mtROS 上升、膜電位下降,粒線體功能異常,導致乳腺癌細胞存活率降低,達成癌症治療效果。除此之外,粒線體功能被影響後,相關蛋白如:粒線體中 DRP1 與瓦氏效應(Warburg effect)中PGK1、PKM2、LDHB、細胞凋亡中 Bcl-2 以及自噬作用中 Beclin 1、LC3 表達下降,粒線體中 PDK1 與細胞凋亡Bax、Cytochrome C、Caspase 3 則表達上升。研究證明一氧化碳奈米藥物傳遞系統合併放射線照射後,釋放的一氧化碳影響粒線體功能並調控相關細胞內分子機轉,藉由放射動力方法達到抗癌且專一性的協同功效。同時因應目前個人化精準醫療趨勢,建立人源腫瘤異種移植模型,用以進行合併療法的體內驗證。

    In this study, successfully synthesized the carbon monoxide nano-drug delivery system, a biosafety gold-silver alloy as a nano-carrier material containing iron pentacarbonyl (Fe(CO)5). The carbon monoxide nano-drug delivery system is activated by radiation, the energy of radiation destroys the structure of the drug, then releases carbon monoxide into cells and tissues to achieve synergetic radiodynamic cancer treatment. In the tumor microenvironment, significant tumor cytotoxicity improves anti-cancer efficacy and specific synergy effect. Combining carbon monoxide and radiation to perform synergetic cancer treatment, and clarified that carbon monoxide affects mitochondrial function and inhibits the Warburg effect, causing apoptosis and autophagy, which in turn leads to the death of cancer cells. The orthotopic PDX model evaluates the efficacy of carbon monoxide nano-drug combined with radiation for radiodynamic cancer therapy, laying the foundation for the development of clinical evaluation in the future, and promoting the research of precise personalized medicine.

    第一章、 序論 1 第二章、 研究背景 2 第一節、 乳腺癌及其治療方法 2 第二節、 放射線及其相關分子機轉 3 第三節、 放射動力療法(RADIODYNAMIC THERAPY, RDT) 5 第四節、 奈米金銀合金及其與癌症治療的關聯 6 第五節、 一氧化碳及其影響粒線體之相關分子機轉 10 第六節、 人源腫瘤異種移植動物模型(PATIENT DERIVED XENOGRAFT MODEL, PDX MODEL) 13 第三章、 研究目的 15 第四章、 研究架構 16 第五章、 研究材料與方法 20 第一節、 研究材料 20 一、 藥品試劑及實驗耗材 20 二、 常用溶液 23 三、 使用儀器 23 四、 體內試驗 25 第二節、 奈米藥物合成方法及分析方法 25 一、 奈米藥物合成方法 25 二、 奈米藥物分析方法 26 第三節、 動物實驗 27 一、 人源腫瘤異種移植動物模型(Patient derived xenograft model, PDX model) 27 二、 癌症治療成效試驗 28 三、 生化值分析 28 四、 蘇木紫伊紅染色 (Hematoxylin & Eosin Staining) 28 第四節、 細胞培養 29 第五節、 細胞攝取(CELL UPTAKE) 30 第六節、 細胞存活率 30 一、 MTT分析法 30 二、 台盼藍分析法(Trypan blue assay) 31 第七節、 螢光染色分析 31 一、 細胞內一氧化碳 31 二、 粒線體活性氧 (mtROS) 32 三、 粒線體膜電位[Mitochondrial Membrane potential (Δψm)] 32 四、 自噬作用(Autophagy) 33 第八節、 西方墨點法 33 第九節、 統計分析 34 第六章、 實驗結果 35 第一節、 金銀合金奈米顆粒作為奈米載體之生物安全劑量 35 第二節、 奈米載體之藥物承載及一氧化碳釋放效果鑑定 35 第三節、 一氧化碳奈米藥物之物化特性相關鑑定 37 第四節、 動物實驗—人源腫瘤異種移植模式 39 第五節、 PDX MODEL動物活體人源腫瘤組織之相關蛋白表達 40 第六節、 一氧化碳奈米藥物合併放射線在細胞中的時間效應及一氧化碳產生效率 40 第七節、 細胞中一氧化碳奈米藥物的放射動力癌症協同治療 41 第八節、 探討一氧化碳影響粒線體所導致的細胞死亡相關現象 42 第九節、 細胞訊息傳遞路徑之相關蛋白表達 44 第七章、 討論 46 第八章、 結論及建議 52 第九章、 參考文獻 53 圖表 60

    Abedin M, Wang D, McDonnell M, Lehmann U, Kelekar A. 2007. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death & Differentiation 14:500-510.
    Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. 2021. One pot synthesis of pegylated bimetallic gold-silver nanoparticles for imaging and radiosensitization of oral cancers. Int J Nanomedicine 16:7103-7121.
    Almeida AS, Figueiredo-Pereira C, Vieira HL. 2015. Carbon monoxide and mitochondria—modulation of cell metabolism, redox response and cell death. Frontiers in physiology 6:33.
    Arora R, Schmitt D, Karanam B, Tan M, Yates C, Dean-Colomb W. 2015. Inhibition of the warburg effect with a natural compound reveals a novel measurement for determining the metastatic potential of breast cancers. Oncotarget 6:662-678.
    Baskar R, Lee KA, Yeo R, Yeoh K-W. 2012. Cancer and radiation therapy: Current advances and future directions. International journal of medical sciences 9:193.
    Bhoo-Pathy N, Verkooijen HM, Wong FY, Pignol JP, Kwong A, Tan EY, et al. 2015. Prognostic role of adjuvant radiotherapy in triple-negative breast cancer: A historical cohort study. Int J Cancer 137:2504-2512.
    Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE. 2008. Heme oxygenase and carbon monoxide initiate homeostatic signaling. Journal of Molecular Medicine 86:267-279.
    Cao W, Gu Y, Meineck M, Xu H. 2014. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chemistry–An Asian Journal 9:48-57.
    Castle KD, Kirsch DG. 2019. Establishing the impact of vascular damage on tumor response to high-dose radiation therapy. Cancer research 79:5685-5692.
    Chakraborty I, Carrington SJ, Mascharak PK. 2014. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photocorms) to visible light and their potential as co-donors to biological targets. Accounts of chemical research 47:2603-2611.
    Chaneton B, Gottlieb E. 2012. Rocking cell metabolism: Revised functions of the key glycolytic regulator pkm2 in cancer. Trends in biochemical sciences 37:309-316.
    Chapuy B, Cheng H, Watahiki A, Ducar MD, Tan Y, Chen L, et al. 2016. Diffuse large b-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood 127:2203-2213.
    Chen L, Zhou SF, Su L, Song J. 2019. Gas-mediated cancer bioimaging and therapy. ACS Nano 13:10887-10917.
    Chen M, Liu H, Li Z, Ming AL, Chen H. 2021. Mechanism of pkm2 affecting cancer immunity and metabolism in tumor microenvironment. J Cancer 12:3566-3574.
    Chen W, Zhang J. 2006. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of nanoscience and nanotechnology 6:1159-1166.
    Chen X, Liu J, Li Y, Pandey NK, Chen T, Wang L, et al. 2022. Study of copper-cysteamine based x-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioactive Materials 7:504-514.
    Chong Y, Huang J, Xu X, Yu C, Ning X, Fan S, et al. 2020. Hyaluronic acid-modified au–ag alloy nanoparticles for radiation/nanozyme/ag+ multimodal synergistically enhanced cancer therapy. Bioconjugate Chemistry 31:1756-1765.
    Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. 2008. Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev 18:54-61.
    Deng W, Chen W, Clement S, Guller A, Zhao Z, Engel A, et al. 2018. Controlled gene and drug release from a liposomal delivery platform triggered by x-ray radiation. Nature Communications 9:2713.
    Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. 2010. Patient-derived first generation xenografts of non-small cell lung cancers: Promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res 16:1442-1451.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. 1998. Photodynamic therapy. JNCI: Journal of the national cancer institute 90:889-905.
    El-Sahli S, Hua K, Sulaiman A, Chambers J, Li L, Farah E, et al. 2021. A triple-drug nanotherapy to target breast cancer cells, cancer stem cells, and tumor vasculature. Cell Death Dis 12:8.
    Elmore S. 2007. Apoptosis: A review of programmed cell death. Toxicologic pathology 35:495-516.
    Fan W, Lu N, Shen Z, Tang W, Shen B, Cui Z, et al. 2019. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent x-ray-activated synergistic therapy. Nature communications 10:1-14.
    Feng Y, Liu X, Li Q, Mei S, Wu K, Yuan J, et al. 2022. A scintillating nanoplatform with upconversion function for the synergy of radiation and photodynamic therapies for deep tumors. Journal of Materials Chemistry C.
    Fingar VH, Henderson BW. 1987. Drug and light dose dependence of photodynamic therapy: A study of tumor and normal tissue response. Photochemistry and Photobiology 46:837-847.
    Foresti R, Hammad J, Clark JE, Johnson TR, Mann BE, Friebe A, et al. 2004. Vasoactive properties of corm‐3, a novel water‐soluble carbon monoxide‐releasing molecule. Br J Pharmacol 142:453-460.
    Fujita K, Tanaka Y, Abe S, Ueno T. 2016. A photoactive carbon-monoxide-releasing protein cage for dose-regulated delivery in living cells. Angew Chem Int Ed Engl 55:1056-1060.
    Gillet J-P, Varma S, Gottesman MM. 2013. The clinical relevance of cancer cell lines. JNCI: Journal of the National Cancer Institute 105:452-458.
    Guan Q, Zhou LL, Li YA, Dong YB. 2019. A nanoscale metal-organic framework for combined photodynamic and starvation therapy in treating breast tumors. Chem Commun (Camb) 55:14898-14901.
    Guo Z, Primeau T, Luo J, Zhang C, Sun H, Hoog J, et al. 2020. Proteomic resistance biomarkers for pi3k inhibitor in triple negative breast cancer patient-derived xenograft models. Cancers 12:3857.
    Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov'yov AV, et al. 2016. Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnol 7:8-8.
    Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, et al. 2013. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 8:e62425-e62425.
    Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goéré D, Mariani P, et al. 2012. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 18:5314-5328.
    Jung J, Seol HS, Chang S. 2018. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat 50:1-10.
    Katifelis H, Lyberopoulou A, Mukha I, Vityuk N, Grodzyuk G, Theodoropoulos GE, et al. 2018. Ag/au bimetallic nanoparticles induce apoptosis in human cancer cell lines via p53, caspase-3 and bax/bcl-2 pathways. Artif Cells Nanomed Biotechnol 46:S389-s398.
    Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. 2009. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature protocols 4:1670-1680.
    Koga Y, Ochiai A. 2019. Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells 8:418.
    Kourti M, Westwell A, Jiang W, Cai J. 2019. Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Oncotarget 10:1132.
    Kourti M, Westwell A, Jiang W, Cai J. 2019. Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Oncotarget 10:1132-1148.
    Kwatra D, Venugopal A, Anant S. 2013. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2:330-342.
    Li X, Lee S, Yoon J. 2018. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chemical Society Reviews 47:1174-1188.
    Li X, He S, Ma B. 2020. Autophagy and autophagy-related proteins in cancer. Molecular cancer 19:1-16.
    Li Y, Dang J, Liang Q, Yin L. 2019. Carbon monoxide (co)-strengthened cooperative bioreductive anti-tumor therapy via mitochondrial exhaustion and hypoxia induction. Biomaterials 209:138-151.
    Li Y, Jiang M, Deng Z, Zeng S, Hao J. 2021. Low dose soft x-ray remotely triggered lanthanide nanovaccine for deep tissue co gas release and activation of systemic anti-tumor immunoresponse. Adv Sci (Weinh) 8:e2004391.
    Lima AR, Santos L, Correia M, Soares P, Sobrinho-Simões M, Melo M, et al. 2018. Dynamin-related protein 1 at the crossroads of cancer. Genes (Basel) 9:115.
    Lis P, Dyląg M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, et al. 2016. The hk2 dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules 21:1730.
    Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, et al. 2021. Advances of nanomedicine in radiotherapy. Pharmaceutics 13.
    McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D, et al. 2012. An integrated genomic screen identifies ldhb as an essential gene for triple-negative breast cancer. Cancer Research 72:5812.
    Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. 2019. Cancer treatment and survivorship statistics, 2019. CA: a cancer journal for clinicians 69:363-385.
    Mirza Z, Karim S. 2021. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 69:226-237.
    Miyazono Y, Hirashima S, Ishihara N, Kusukawa J, Nakamura K-i, Ohta K. 2018. Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Scientific Reports 8:350.
    Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. 2002. Carbon monoxide-releasing molecules: Characterization of biochemical and vascular activities. Circulation research 90:e17-e24.
    Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. 2002. Carbon monoxide-releasing molecules: Characterization of biochemical and vascular activities. Circ Res 90:E17-24.
    Motterlini R, Foresti R. 2017. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol 312:C302-c313.
    Murayama T, Gotoh N. 2019. Patient-derived xenograft models of breast cancer and their application. Cells 8:621.
    Na D, Moon H-G. 2021. Patient-derived xenograft models in breast cancer research. In: Translational research in breast cancer, (Noh D-Y, Han W, Toi M, eds). Singapore:Springer Singapore, 283-301.
    Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. 2015. Up regulation of bax and down regulation of bcl2 during 3-nc mediated apoptosis in human cancer cells. Cancer Cell International 15:55.
    Nedeljković M, Damjanović A. 2019. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells 8.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. 2013. Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833:3448-3459.
    Okada S, Vaeteewoottacharn K, Kariya R. 2018. Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chemical and Pharmaceutical Bulletin 66:225-230.
    Paunesku T, Gutiontov S, Brown K, Woloschak GE. 2015. Radiosensitization and nanoparticles. In: Nanotechnology-based precision tools for the detection and treatment of cancer:Springer, 151-171.
    Pei S, Li J-B, Wang Z, Xie Y, Chen J, Wang H, et al. 2021. A corm loaded nanoplatform for single nir light-activated bioimaging, gas therapy, and photothermal therapy in vitro. Journal of Materials Chemistry B 9:9213-9220.
    Piantadosi CA, Carraway MS, Suliman HB. 2006. Carbon monoxide, oxidative stress, and mitochondrial permeability pore transition. Free Radical Biology and Medicine 40:1332-1339.
    Ponduru TT, Wang G, Manoj S, Pan S, Zhao L, Frenking G, et al. 2020. Synthesis and characterization of heterometallic complexes involving coinage metals and isoelectronic fe (co) 5,[mn (co) 5]− and [fe (co) 4 cn]− ligands. Dalton Transactions 49:8566-8581.
    Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, et al. 2010. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 21:85103.
    Praetorius NP, Mandal TK. 2007. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37-51.
    Prise KM, Schettino G, Folkard M, Held KD. 2005. New insights on cell death from radiation exposure. Lancet Oncol 6:520-528.
    Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang Y, et al. 2017. Phosphoglycerate kinase 1 phosphorylates beclin1 to induce autophagy. Molecular Cell 65:917-931.e916.
    R. Oliveira S, Queiroga CS, Vieira HL. 2016. Mitochondria and carbon monoxide: Cytoprotection and control of cell metabolism–a role for ca2+? The Journal of physiology 594:4131-4138.
    Romão CC, Blättler WA, Seixas JD, Bernardes GJ. 2012. Developing drug molecules for therapy with carbon monoxide. Chemical Society Reviews 41:3571-3583.
    Ryter SW, Ma KC, Choi AM. 2018. Carbon monoxide in lung cell physiology and disease. American Journal of Physiology-Cell Physiology 314:C211-C227.
    Santucci R, Sinibaldi F, Cozza P, Polticelli F, Fiorucci L. 2019. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules 136:1237-1246.
    Schatzschneider U. 2015. Novel lead structures and activation mechanisms for co-releasing molecules (corms). Br J Pharmacol 172:1638-1650.
    Schaue D, McBride WH. 2015. Opportunities and challenges of radiotherapy for treating cancer. Nature Reviews Clinical Oncology 12:527-540.
    Sebastián D, Acín-Pérez R, Morino K. 2016. Mitochondrial health in aging and age-related metabolic disease. Vol. 2016:Hindawi.
    Sia J, Szmyd R, Hau E, Gee HE. 2020. Molecular mechanisms of radiation-induced cancer cell death: A primer. Frontiers in cell and developmental biology 8:41.
    Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. 2020. The entry of nanoparticles into solid tumours. Nature Materials 19:566-575.
    Song G, Cheng L, Chao Y, Yang K, Liu Z. 2017. Emerging nanotechnology and advanced materials for cancer radiation therapy. Advanced Materials 29:1700996.
    Srinivasan S, Guha M, Kashina A, Avadhani NG. 2017. Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim Biophys Acta Bioenerg 1858:602-614.
    Stucki D, Krahl H, Walter M, Steinhausen J, Hommel K, Brenneisen P, et al. 2020. Effects of frequently applied carbon monoxide releasing molecules (corms) in typical co-sensitive model systems – a comparative in vitro study. Archives of Biochemistry and Biophysics 687:108383.
    Sulaiman A, McGarry S, El-Sahli S, Li L, Chambers J, Phan A, et al. 2019. Co-targeting bulk tumor and cscs in clinically translatable tnbc patient-derived xenografts via combination nanotherapy. Mol Cancer Ther 18:1755-1764.
    Sun W, Zhou Z, Pratx G, Chen X, Chen H. 2020. Nanoscintillator-mediated x-ray induced photodynamic therapy for deep-seated tumors: From concept to biomedical applications. Theranostics 10:1296-1318.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 2021. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 71:209-249.
    Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gérard J-P. 2013. Past, present, and future of radiotherapy for the benefit of patients. Nature Reviews Clinical Oncology 10:52-60.
    Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. 2016. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in a549 cells. Journal of cellular biochemistry 117:2302-2314.
    Truong NP, Whittaker MR, Mak CW, Davis TP. 2015. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12:129-142.
    Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. 2016. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338-5431.
    Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 324:1029-1033.
    Wang X-B, Wang Y-L, Yang J, Xing X-P, Li J, Wang L-S. 2009. Evidence of significant covalent bonding in au(cn)2−. Journal of the American Chemical Society 131:16368-16370.
    Wang X-S, Zeng J-Y, Li M-J, Li Q-R, Gao F, Zhang X-Z. 2020. Highly stable iron carbonyl complex delivery nanosystem for improving cancer therapy. ACS Nano 14:9848-9860.
    Watt J, Bleier GC, Austin MJ, Ivanov SA, Huber DL. 2017. Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles. Nanoscale 9:6632-6637.
    Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, et al. 2013. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res 73:7009-7021.
    Wegiel B, Hanto DW, Otterbein LE. 2013. The social network of carbon monoxide in medicine. Trends in molecular medicine 19:3-11.
    Wei Q-Y, Xu Y-M, Lau ATY. 2020. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers 12:2783.
    Weroha SJ, Becker MA, Enderica-Gonzalez S, Harrington SC, Oberg AL, Maurer MJ, et al. 2014. Tumorgrafts as in vivo surrogates for women with ovarian cancer. Clinical Cancer Research 20:1288-1297.
    Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. 2015. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Research 17:17.
    Winburn IC, Gunatunga K, McKernan RD, Walker RJ, Sammut IA, Harrison JC. 2012. Cell damage following carbon monoxide releasing molecule exposure: Implications for therapeutic applications. Basic & clinical pharmacology & toxicology 111:31-41.
    Wu H, Lin J, Liu P, Huang Z, Zhao P, Jin H, et al. 2016. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by agnps. Biomaterials 101:1-9.
    Xie L, Ji X, Zhang Q, Wei Y. 2022. Curcumin combined with photodynamic therapy, promising therapies for the treatment of cancer. Biomedicine & Pharmacotherapy 146:112567.
    Xu M, Lu Q, Song Y, Yang L, Li J, Li N. 2020a. Enhanced bax upregulating in mitochondria for deep tumor therapy based on so2 prodrug loaded au–ag hollow nanotriangles. Biomaterials 250:120076.
    Xu M, Lu Q, Song Y, Yang L, Ren C, Li W, et al. 2020b. Nir-ii driven plasmon-enhanced cascade reaction for tumor microenvironment-regulated catalytic therapy based on bio-breakable au–ag nanozyme. Nano Research 13:2118-2129.
    Xuan Y, Guan M, Zhang S. 2021. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 11:7360-7378.
    Yao X, Yang P, Jin Z, Jiang Q, Guo R, Xie R, et al. 2019. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by co induced ferroptosis. Biomaterials 197:268-283.
    Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. 2020. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Frontiers in Chemistry 8.
    Yin L, Duan JJ, Bian XW, Yu SC. 2020. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22:61.
    Yuan X, Cen J, Chen X, Jia Z, Zhu X, Huang Y, et al. 2022. Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. Journal of Colloid and Interface Science 605:851-862.
    Zhang W, Zhang S-L, Hu X, Tam KY. 2015. Targeting tumor metabolism for cancer treatment: Is pyruvate dehydrogenase kinases (pdks) a viable anticancer target? International journal of biological sciences 11:1390.
    Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. 2013. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73:4885-4897.
    Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S, et al. 2018. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase m2-mediated aerobic glycolysis. Scientific Reports 8:14517.
    Zhou Y, Yu W, Cao J, Gao H. 2020. Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 255:120193.
    Zhu Q, Kirova YM, Cao L, Arsene-Henry A, Chen J. 2018. Cardiotoxicity associated with radiotherapy in breast cancer: A question-based review with current literatures. Cancer Treatment Reviews 68:9-15.
    Zuckerbraun BS, Chin BY, Bilban M, d'Avila JdC, Rao J, Billiar TR, et al. 2007. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. The FASEB Journal 21:1099-1106.

    無法下載圖示 校內:2027-02-07公開
    校外:2027-02-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE