| 研究生: |
賀詩欣 Ho, Shih-Hsin |
|---|---|
| 論文名稱: |
建立本土微藻Scenedesmus obliquus CNW-N之最適化微藻二氧化碳固定與生質酒精生產程序 Optimizing microalgae-based CO2 fixation and bioethanol production processes using an indigenous microalga Scenedesmus obliquus CNW-N |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 微藻 、斜邊柵藻 、二氧化碳固定 、二階段培養 、半批次操作 、連續式操作 、總糖 、葡萄糖 、酒精 、分段水解與醱酵程序 、放大培養 、戶外培養 |
| 外文關鍵詞: | microalgae, Scenedesmus obliquus, CO2 fixation, response surface methodology, two-stage, semi-batch, continuous, carbohydrate, glucose, bioethanol, separate hydrolysis and fermentation (SHF), scale up, outdoor cultivation |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於日益嚴重的全球暖化與氣候變遷問題,開發二氧化碳捕捉與封存的相關技術乃刻不容緩的議題。其中,利用微藻進行生物固碳與其他下游產品的應用在最近受到相當廣泛的重視。本研究從南台灣淡水域中篩得的22株本土斜邊柵藻 (Scenedesmus obliquus)中選出七株進行詳細的親緣鑑定與二氧化碳固定能力測試。在這七株本土柵藻中,S. obliquus CNW-N展現了較佳的生長速率與二氧化碳固定能力,因此被選為進行後續深入研究的目標藻株。本研究首先利用反應曲面法 (Response surface methodology; RSM) 進行批次培養條件的優化,選用跟生長與二氧化碳固定效率相關的四個重要因子(例如:二氧化碳濃度、二氧化碳流速、鎂離子濃度、與光照強度)進行混成實驗,並利用比生長速率與二氧化碳固定效率的表現做為評估的依據,尋找四個影響因子中交疊的部分。在最適化範圍中 (2.5%二氧化碳濃度搭配流速0.4 vvm、鎂離子濃度1.7-2.7 mM、光強度180-250 μmol m-2 s-1),比生長速率與二氧化碳固定效率可分別大於1.22 d-1與800 mg L-1d-1。再者,本研究利用半批次與連續式操作等工程策略進一步提升其生長與二氧化碳固定效率。在最佳連續流操作條件下,其生質體產率與二氧化碳固定效率可分別高達1139.5 mg L-1d-1 與1988.6 mg L-1d-1,此成果表現優於大多數目前發表在國際期刊之數據。
此外,本研究亦致力於利用缺氮與其他工程策略提升微藻S. obliquus CNW-N的二氧化碳固定能力與含糖量。在前面最佳批次條件下,首先乃利用氮源缺乏策略來使其藻體內的糖量累積,在兩天的缺氮下其細胞內總糖可以從20.9%迅速提升至49.4%。 為了進一步增加其未來進行酒精生產的可行性,本研究進一步利用不同的工程操作策略 (例如:二階段培養、半批次操作、與連續式操作) 來提升其二氧化碳固定效率與胞內含糖量。在最佳的半批次操作下,其生質體生產速率、總糖累積速率、與二氧化碳固定效率可分別達883.8 mg L-1 d-1、467.6 mg L-1 d-1 (49-52%之胞內含糖量)、與1546.7 mg L-1 d-1。此數據表現亦明顯優於目前大多數文獻發表之成果。再者,在不同工程操作結合缺氮策略下,其胞內總糖大多皆為葡萄糖(佔約80-82%),十分適合進一步進行生質酒精發酵或是其他相關產品之生產。
除此之外,本研究亦著眼於評估利用富含糖量的S. obliquus CNW-N藻體做為料源來進行後段之酒精生產,測試不同的酸水解條件並結合後段的兩階段水解醣化醱酵程序(separate hydrolysis and fermentation; SHF)來進行酒精生產。研究中發現2%之稀硫酸能夠非常有效率的水解S. obliquus CNW-N的乾、濕藻體,在起始濃度為40 g L-1(濕藻體)與60 g L-1(乾藻體)的條件中達到約96-98%的葡萄糖產率。為了增加未來商業化的可行性,本研究決定選擇未經過去水步驟的濕藻體做為後段之酒精發酵料源。再經過2%硫酸水解前處理與兩階段水解醣化醱酵程序,酒精濃度可達8.55 g L-1 (起始葡萄糖濃度約為16.8 g L-1),達到幾乎99.8%的理論產率。因此,此富含糖類的微藻S. obliquus CNW-N極適合做為後段酒精生產之料源。
最後,本研究將室內小型的管狀反應器放大至50升並進行微藻S. obliquus CNW-N之戶外培養測試。在夏季陽光充足的環境下,最大的二氧化碳固定效率、總糖含量、與總糖生產效率可分別達430.2 mg L-1 d-1、45.5%、和111.8 mg L-1 d-1。此外,為了進一步提升其表現,本研究亦在夜間(晚上六點至早上六點)進行人工補光的實驗測試,發現在有夜間補光(500 μmol m-2 s-1)的環境下,其最大的生質體生產速率、二氧化碳固定速率、與總糖累積速率可分別提升至390.1 mg L-1d-1、682.7 mg L-1d-1、和185.7 mg L-1d-1,亦明顯優於大多數相關之文獻值。另外,利用戶外培養的S. obliquus CNW-N在缺氮條件下培養可迅速累積葡萄糖(可佔總糖中的82%),表示其適合用來進行後續的酒精發酵。因此,將S. obliquus CNW-N於夜間補光的戶外光反應器系統放大培養,可同時進行微藻減碳與生物燃料(酒精)之生產。
Due to the problems of climate change and global warming, technology on CO2 capture and storage is urgently needed. In particular, biofixation of CO2 by microalgae and the downstream utilization of resulting microalgae biomass have recently become a hot research topic. In this study, seven out of twenty-two indigenous Scenedesmus obliquus isolates obtained from southern Taiwan were selected based on their CO2 fixation ability. Among them, S. obliquus CNW-N displayed the highest cell growth rate and highest CO2 removal ability, thereby being selected for detailed CO2 fixation studies. Response surface methodology was used to optimize the four critical parameters (e.g., CO2 concentration, CO2 flow rate, magnesium concentration, and light intensity), which significantly influence the CO2 fixation performance. Two performance indexes (e.g., specific growth rate and CO2 fixation rate) were used to assess the microalgal-CO2 fixation ability. An overlay counter plot was used to determine the optimal region of four vital parameters by simultaneously considering all the performance indexes. The optimal region (i.e., 2.5% CO2 , 0.4 vvm, magnesium concentration, 1.7-2.7 mM; light intensity, 180-250 μmol m-2 s-1) was obtained based on the criteria of specific growth rate >1.22 d-1 and CO2 fixation rate > 800 mg L-1d-1. Moreover, using engineering strategies of semi-continuous and continuous cultivation further improves the biomass productivity and CO2 fixation rate to 1139.5 mg L-1 d-1 and 1988.6 mg L-1 d-1, respectively. This performance is better than the results from most of the related studies.
Moreover, the nitrogen starvation strategy and engineering operation strategies were applied to achieve higher CO2 fixation rate and carbohydrate productivity of Scenedesmus obliquus CNW-N. The microalga was first cultivated with 2.5% CO2 feeding and a light intensity of 210-230 μmol m-2 s-1 under nitrogen rich medium for cell growth and CO2 fixation, followed by applying nitrogen starvation strategy to trigger carbohydrate accumulation. After two days of nitrogen starvation, the carbohydrate content of microalga S. obliquus CNW-N increased dramatically from 20.9 to 49.4%. Engineering strategies (e.g., two-stage, semi-batch, and continuous operations) were also utilized to further enhance the carbohydrate production performance of S. obliquus CNW-N so that the microalgal strain is more feasible for the use as feedstock for microalgae-based bioethanol production,. Under the optimal operation condition (i.e., semi-continuous operation), the highest biomass productivity (883.8 mg L-1 d-1), carbohydrate productivity (467.6 mg L-1 d-1 with 49-52% carbohydrate content per dry weight of biomass), and CO2 fixation rate (1546.7 mg L-1 d-1) were reached. This performance is also better than that obtained from most related studies. Under the nitrogen starvation condition and bioreactor operation strategies, the carbohydrate accumulated in the microalgal biomass was mainly composed of glucose, accounting for 80-82% of total carbohydrates. This carbohydrate composition is suitable for the production of bioethanol and any other fermentable products based on sugar platform.
The potential of using the carbohydrate-rich microalga S. obliquus CNW-N as feedstock for bioethanol production was evaluated via various acid hydrolysis conditions combined with separate hydrolysis and fermentation (SHF) process. Dilute acid hydrolysis with 2% sulfuric acid was shown to be effective and economical in saccharifying both wet and dried biomass of S. obliquus CNW-N, achieving a glucose yield of nearly 96-98% from the microalgal carbohydrates using starting biomass concentration of 40 g L-1 and 60 g L-1, respectively. To increase the feasibility of further commercialization, the wet biomass without dehydration step was used as the feedstock. Using the acidic hydrolysate of S. obliquus CNW-N biomass as substrate, the SHF process produced ethanol at a concentration of 8.55 g L-1 (initial glucose concentration=16.8 g L-1) and nearly 99.8% theoretical yield. These findings indicate the feasibility of using carbohydrate-rich microalgae as feedstock for fermentative bioethanol production.
To assess the commercial viability, the scale of the indoor vertical tubular-type photobioreactor (PBR) was increased to 50 liter PBR for outdoor cultivation of S. obliquus CNW-N. Under the phototrophic condition of sunny period during the summer season, the highest CO2 fixation rate, carbohydrate content, and carbohydrate productivity of 430.2 mg L-1d-1, 45.5%, and 111.8 mg L-1d-1, respectively, were obtained. The effect of external light compensation during night period (from 6 p.m. to 6 a.m.) on the performance of biomass and carbohydrate production was also investigated. The biomass productivity, CO2 fixation rate, and carbohydrate productivity of S. obliquus CNW-N were further improved to 390.1 mg L-1d-1, 682.7 mg L-1d-1, and 185.7 mg L-1d-1 when additional artificial light of 500 μmol m-2s-1 was used during the night period. This outdoor cultivaton performance is also better than most related reports. In particular, the microalgae-based sugars produced from large-scale cultivation system with external light compensation were mainly glucose (approximately 82% of the total sugars), suggesting that S. obliquus CNW-N is appropriate for the use as feedstock for ethanol fermentation with additional benefits of CO2 fixation.
Aguilar-May, B., Sanchez-Saavedra, M.D. 2009. Growth and removal of nitrogen and phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus. J. Appl. Phycol., 21(3), 353-360.
Amin, S. 2009. Review on biofuel oil and gas production processes from microalgae. Energy Conver. Manage., 50(7), 1834-1840.
Araujo, S.D., Garcia, V.M.T. 2005. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture, 246(1-4), 405-412.
Avila-Leon, I., Matsudo, M.C., Sato, S., de Carvalho, J.C.M. 2012. Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J. Appl. Microbiol., 112(6), 1086-1094.
Badger, M.R., Kaplan, A., Berry, J.A. 1980. Internal inorganic carbon pool of Chlamydomonas-reinhardii - evidence for a carbon-dioxide concentration mechanism. Plant Physiol., 66(3), 407-413.
Badger, M.R., Price, G.D. 1989. Carbonic-anhydrase activity associated with the cyanobacterium synechococcus PCC7942. Plant Physiol., 89(1), 51-60.
Bai, F.W., Anderson, W.A., Moo-Young, M. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv., 26(1), 89-105.
Banerjee, S., Hew, W.E., Khatoon, H., Shariff, M., Yusoff, F.M. 2011. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African J. Biotechnol., 10(8), 1375-1383.
Becker, E.W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge: Cambridge Univ. Press.
Benemann, J.R. 1993. Utilization of carbon-dioxide from fossil-fuel - burning power-plants with biological-systems. Energy Conver. Manage., 34(9-11), 999-1004.
Benko, Z., Andersson, A., Szengyel, Z., Gaspar, M., Reczey, K., Stalbrand, H. 2007. Heat extraction of corn fiber hemicellulose. Appl. Biochem. Biotechnol., 137(1), 253-265.
Borowitzka, M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol., 70(1-3), 313-321.
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., Vítová, M. 2011. Microalgae—novel highly efficient starch producers. Biotechnol. Bioeng., 108(4), 766-776.
Brennan, L., Owende, P. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Rev., 14(2), 557-577.
Bridgwater, A.V. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J., 91(2-3), 87-102.
Brown, M.R., Jeffrey, S.W., Volkman, J.K., Dunstan, G.A. 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151(1-4), 315-331.
Brown, M.R., McCausland, M.A., Kowalski, K. 1998. The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture, 165(3-4), 281-293.
Calvin, M. 1989. 40 years of photosynthesis and related activities. Photosynthesis Res., 21(1), 3-16.
Candioti, L.V., Robles, J.C., Mantovani, V.E., Goicoechea, H.C. 2006. Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis. Talanta, 69(1), 140-147.
Carlsson, A.S., Beilen, J.B.V., Möller, R., Clayton, D. 2007. Micro- and macro-algae: utility for industrial applications : outputs from the EPOBIO project. CPL Press.
Carvalho, A.P., Malcata, F.X. 2001. Transfer of carbon dioxide within cultures of microalgae: Plain bubbling versus hollow-fiber modules. Biotechnol. Prog., 17(2), 265-272.
Carvalho, A.P., Monteiro, C.M., Malcata, F.X. 2009. Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J. Appl. Phycol., 21(5), 543-552.
Cerveny, J., Setlik, I., Trtilek, M., Nedbal, L. 2009. Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng. Life Sci., 9(3), 247-253.
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol., 102(1), 71-81.
Cheng, L., Zhang, L., Chen, H., Gao, C. 2006. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep. Purif. Technol., 50(3), 324-329
Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv., 25(3), 294-306.
Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S. 2008. Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresour. Technol., 99(9), 3389-3396.
Chiu, S.Y., Tsai, M.T., Kao, C.Y., Ong, S.C., Lin, C.S. 2009. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng. Life Sci., 9(3), 254-260.
Choi, S.P., Nguyen, M.T., Sim, S.J. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol., 101(14), 5330-5336.
Coleman, J.R. 1991. The molecular and biochemical analyses of CO2-concentrating mechnisms in cyanobacteria and microalgae. Plant Cell and Environment, 14(8), 861-867.
Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J. 1999. An optical method for the rapid measurement of micromolar levels of nitrate in marine phytoplankton cultures. J. Appl. Phycol., 11, 179-184.
Costa, J.A., Colla, L.M., Duarte, P.F. 2004. Improving Spirulina platensis biomass yield a fed-batch process. Bioresour. Technol., 92, 237- 241.
Cuaresma Franco, M., Buffing, M.F., Janssen, M., Vílchez Lobato, C., Wijffels, R.H. 2012. Performance of Chlorella sorokiniana under simulated extreme winter conditions. J. Appl. Phycol., 1-7.
Cunningham, F.X., Dennenberg, R.J., Jursinic, P.A., Gantt, E. 1990. Growth under red-light ehhances photosystem II relative to photosystem I and phycobilisomes in the red alga Porphyridium Cruentum. Plant Physiol., 93(3), 888-895.
D'Souza, F.M.L., Kelly, G.J. 2000. Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture, 181(3-4), 311-329.
da Silva, T.L., Reis, A., Medeiros, R., Oliveira, A.C., Gouveia, L. 2009. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl. Biochem. Biotechnol., 159(2), 568-578.
Danilov, R.A., Ekelund, N.G.A. 2001. Effects of Cu2+, Ni2+, Pb2+, Zn2+ and pentachlorophenol on photosynthesis and motility in Chlamydomonas reinhardtii in short-term exposure experiments. BMC Ecol., 1(1 Cited April 30, 2002), 1-10.
Dayananda, C., Kumudha, A., Sarada, R., Ravishankar, G. 2010. Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Essays, 5(17), 2497-2505.
de Morais, M.G., Costa, J.A.V. 2007a. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol., 129(3), 439-445.
de Morais, M.G., Costa, J.A.V. 2007b. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., 29, 1349-1352.
de Morais, M.G., Costa, J.A.V. 2007c. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers. Manage., 48(7), 2169-2173.
De Oliveira, M.A.C.L., Monteiro, M.P.C., Robbs, P.G., Leite, S.G.F. 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 7(4), 261-275.
Deschamps, P., Haferkamp, I., d'Hulst, C., Neuhaus, H.E., Ball, S.G. 2008. The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci., 13(11), 574-582.
Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., Posewitz, M.C. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol., 19(3), 235-240.
Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., Willats, W.G.T. 2012. The cell walls of green algae: a journey through evolution and diversity. Frontiers in plant sci., 3, 82.
Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A. 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331-3335.
Efremenko, E.N., Nikolskaya, A.B., Lyagin, I.V., Senko, O.V., Makhlis, T.A., Stepanov, N.A., Maslova, O.V., Mamedova, F., Varfolomeev, S.D. 2012. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol., 114(0), 342-348.
Eriksen, N.T. 2008. The technology of microalgal culturing. Biotechnol. Lett., 30(9), 1525-1536.
Fan, L.H., Zhang, Y.T., Zhang, L., Chen, H.L. 2008. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J. Membr. Sci., 325(1), 336-345.
Fernandes, B.D., Dragone, G.M., Teixeira, J.A., Vicente, A.A. 2010. Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl. Biochem. Biotechnol., 161(1-8), 218-226.
Fernandez-Sevilla, J.M., Fernandez, F.G.A., Grima, E.M. 2010. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol., 86(1), 27-40.
Fierro, S., Sanchez-Saavedra, M.D.P., Copalcua, C. 2008. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour. Technol., 99(5), 1274-1279.
GCG. 1995. Wisconsin Package Version 8.1 Program Manual. Madison, WI: Genetics Computer Group.
Giordano, M. 2001. Interactions between C and N metabolism in Dunaliella salina cells cultured at elevated CO2 and high N concentrations. J. Plant Physiol., 158(5), 577-581.
González-Fernández, C., Molinuevo-Salces, B., García-González, M.C. 2010. Open and enclosed photobioreactors comparison in terms of organic matter utilization, biomass chemical profile and photosynthetic efficiency. Ecol. Eng., 36(10), 1497-1501.
Gouveia, L. 2011. Microalgae as a Feedstock for Biofuels. SpringerBriefs in Microbiology.
Gouveia, L., Oliveira, A.C. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36(2), 269-74.
Gouveia, L., Veloso, V., Reis, A., Fernandes, H., Novais, J., Empis, J. 1996. Evolution of pigment composition in Chlorella vulgaris. Bioresour. Technol., 57(2), 157-159.
Graham-Rowe, D. 2011. Beyond food versus fuel. Nature, 474(7352), S6-S8.
Griffiths, M.J., Harrison, S.T.L. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol., 21(5), 493-507.
Guiry, M.D., John, D.M., Rindi, F., McCarthy, T.K. 2007. New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98.
Harrington, K.J. 1986. Chemical and physical-properties of vegetable oil esters and their effect on diesel fuel performance. Biomass, 9(1), 1-17.
Harun, R., Danquah, M.K. 2011a. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J., 168(3), 1079-1084.
Harun, R., Danquah, M.K. 2011b. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem., 46(1), 304-309.
Harun, R., Danquah, M.K., Forde, G.M. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol., 85(2), 199-203.
Hase, R., Oikawa, H., Sasao, C., Morita, M., Watanabe, Y. 2000. Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J. Biosci. Bioeng., 89(2), 157-163.
Hirano, A., Ueda, R., Hirayama, S., Ogushi, Y. 1997. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22(2-3), 137-142.
Ho, S.H., Chen, C.Y., Chang, J.S. 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol.(113), 244-252.
Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S. 2011. Perspectives on microalgal CO2-emission mitigation systems -- A review. Biotechnol. Adv., 29(2), 189-198.
Ho, S.H., Chen, W.M., Chang, J.S. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol., 101(22), 8725-8730.
Hodaifa, G., Martinez, M.E., Sanchez, S. 2009. Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. J. Chem. Technol. Biotechnol., 84(10), 1550-1558.
Hsueh, H.T., Chu, H., Yu, S.T. 2007. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66(5), 878-886.
Huang, S.W. 2011. Characterization and optimal production of carbohydrates from indigenous microalgae for bioethanol production. Master’s Thesis, Department of Chemical Engineering, National Cheng Kung University.
Huo, Y.X., Cho, K.M., Rivera, J.G.L., Monte, E., Shen, C.R., Yan, Y.J., Liao, J.C. 2011. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol., 29(4), 346-U160.
Ike, A., Toda, N., Tsuji, N., Hirata, K., Miyamoto, K. 1997. Hydrogen photoproduction from CO2-fixing microalgal biomass: Application of halotolerant photosynthetic bacteria. J. Fermen. Bioeng., 84(6), 606-609.
Illman, A., Scragg, A., Shales, S. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol., 27(8), 631-635.
Iverson, T.M. 2006. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr. Opin. Chem. Biol., 10(2), 91-100.
Jacob-Lopes, E., Gimenes Scoparo, C.H., Queiroz, M.I., Franco, T.T. 2010. Biotransformations of carbon dioxide in photobioreactors. Energy Convers. Manage., 51(5), 894-900.
Jacob-Lopes, E., Scoparo, C.H.G., Franco, T.T. 2008. Rates of CO2 removal by Aphanothece microscopica Nägeli in tubular photobioreactors. Chem.l Eng. Process., 47(8), 1365-1373.
Jacob-Lopes, E., Scoparo, C.H.G., Lacerda, L.M.C.F., Franco, T.T. 2009. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem. Eng. Process., 48(1), 306-310.
Janssen, M., Janssen, M., Winter, M.d., Tramper, J., Mur, L.R., Snel, J., Wijffels, R.H. 2000. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light:dark cycles. J. Biotechnol., 78 123-137.
Janssen, M., Slenders, P., Tramper, J., Mur, L.R., Wijffels, R. 2001. Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb. Technol., 29(4-5), 298-305.
Jin, H.F., Lim, B.R., Lee, K. 2006. Influence of nitrate feeding on carbon dioxide fixation by microalgae. J. Envir. Sci. Health Part a-Toxic/Hazardous Subs. Envir. Eng., 41(12), 2813-2824.
John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 102(1), 186-193.
Jukes, T.H., Cantor, C.R. 1969. Evolution of protein molecules. In Mammalian Protein Metabolism. Edited by H. N. Munro. New York: Academic Press., 3, 21-132.
Keffer, J.E., Kleinheinz, G.T. 2002. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol., 29(5), 275-280.
Khalil, Z.I., Asker, M.M.S., El-Sayed, S., Kobbia, I.A. 2010. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol., 26(7), 1225-1231.
Kim, M.S., Baek, J.S., Yun, Y.S., Jun Sim, S., Park, S., Kim, S.C. 2006. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. International J. Hydrogen Energy, 31(6), 812-816.
Kimura, S., Kondo, T. 2002. Recent progress in cellulose biosynthesis. J. Plant Res., 115(1120), 297-302.
Kluge, A.G., Farris, F.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool., 18, 1-32.
Knothe, G. 2008. "Designer" biodiesel: Optimizing fatty ester (composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364.
Kontturi, E., Vuorinen, T. 2009. Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose, 16(1), 65-74.
López-Elías, J.A., Voltolina, D., Enríquez-Ocaña, F., Gallegos-Simental, G. 2005. Indoor and outdoor mass production of the diatom Chaetoceros muelleri in a mexican commercial hatchery. Aquacult. Eng., 33(3), 181-191.
Lee, J.S., Kim, D.K., Lee, J.P., Park, S.C., Koh, J.H., Cho, H.S., Kim, S.W. 2002. Effects of SO2 and NO on growth of Chlorella sp KR-1. Bioresour. Technol., 82(1), 1-4.
Lehninger, A., Nelson, D., Cox, M. 2005. Lehninger principles of biochemistry. 4th ed. New York: W.H. Freeman.
Lepage, G., Roy, C.C. 1984. Improved Recovery of Fatty-Acid through Direct Trans-Esterification without Prior Extraction or Purification. J. Lipid Res., 25(12), 1391-1396.
Li, Q., Du, W., Liu, D.H. 2008a. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80(5), 749-756.
Li, Y., Han, D., Hu, G., Sommerfeld, M., Hu, Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng., 107(2), 258-268.
Li, Y., Horsman, M., Wang, B., Wu, N., Lan, C.Q. 2008b. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans Appl. Microbiol. Biotechnol., 81(4), 629-636.
Li, Y., Horsman, M., Wu, N., Lan, C., Dubois-Calero, N. 2008c. Biofuels from microalgae. Biotech. Prog., 24(4), 815-820.
Li, Y.Q., Zhang, X.W., Chen, G., Wei, D., Chen, F. 2008d. Algal lectins for potential prevention of HIV transmission. Curr. Med. Chem., 15(11), 1096-1104.
Li, Y.T., Han, D.X., Sommerfeld, M., Hu, Q.A. 2011. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour. Technol., 102(1), 123-129.
Liang, Y.N., Sarkany, N., Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett., 31(7), 1043-1049.
Lin, P.J., Chang, J.S., Yang, L.H., Lin, C.Y., Wu, S.Y., Lee, K.S. 2011. Enhancing the performance of pilot-scale fermentative hydrogen production by proper combinations of HRT and substrate concentration. Inter. J. Hydrogen Energy, 36(21), 14289-14294.
Liu, Z.Y., Wang, G.C., Zhou, B.C. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol., 99(11), 4717-4722.
Lopez, C.V.G., Fernandez, F.G.A., Sevilla, J.M.F., Fernandez, J.F.S., Garcia, M.C.C., Grima, E.M. 2009. Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100(23), 5904-5910.
Lynd, L.R. 1996. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Rev. Energy Envir., 21, 403-465.
Maeda, K., Owada, M., Kimura, N., Omata, K., Karube, I. 1995. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage., 36(6-9), 717-720.
Mandal, S., Mallick, N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol., 84(2), 281-291.
Marchetti, J., Bougaran, G., Le Dean, L., Megrier, C., Lukomska, E., Kaas, R., Olivo, E., Baron, R., Robert, R., Cadoret, J.P. 2012. Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture, 326, 106-115.
Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Rev., 14(1), 217-232.
Matsumoto, H., Hamasaki, A., Sioji, N., Ikuta, Y. 1997. Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J. Chem. Eng. Japan, 30(4), 620-624.
Matsunaga, T., Matsumoto, M., Maeda, Y., Sugiyama, H., Sato, R., Tanaka, T. 2009. Characterization of marine microalga, Scenedesmus sp strain JPCC GA0024 toward biofuel production. Biotechnol. Lett., 31(9), 1367-1372.
Melis, A. 1999. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci., 4(4), 130-135.
Metting, F.B. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. Biotechnol., 17(5-6), 477-489.
Miao, X., Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol., 97(6), 841-846.
Miller, A.G., Espie, G.S., Canvin, D.T. 1990. Physiological-aspects of CO2 and HCO3- transport by cyanobacteria - a review. Canadian J. Botany-Revue Canadienne De Botanique, 68(6), 1291-1302.
Miranda, J.R., Passarinho, P.C., Gouveia, L. 2012. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol., 104(0), 342-348.
Mohagheghi, A., Evans, K., Chou, Y. C. & Zhang, M. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochem. Biotechnol., (98),885-898.
Moroney, J.V., Togasaki, R.K., Husic, H.D., Tolbert, N.E. 1987. Evidence that an internal carbonic-anhydrase is present in 5-percent CO2-grown and air-grown Chlamydomonas. Plant Physiol., 84(3), 757-761.
Moxley, G., Zhang, Y.H.P. 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energ. Fuel, 21(6), 3684-3688.
Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A. 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv., 28(6), 817-830.
Mussgnug, J.H., Klassen, V., Schluter, A., Kruse, O. 2010. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol., 150(1), 51-56.
Mussgnug, J.H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P.M., Kruse, O., Hankamer, B. 2007. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J., 5(6), 802-814.
Negoro, M., Shioji, N., Miyamoto, K., Miura, Y. 1991. Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl. Biochem. Biotechnol., 28-9, 877-886.
Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H., Sim, S.J. 2009. Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production. J. Microbiol. Biotechnol., 19(2), 161-166.
Nguyen, T.A.D., Kim, K.R., Kim, M.S., Sim, S.J. 2010. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Inter. J. Hydrogen Energy, 35(24), 13392-13398.
NREL. 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report
Ogbonna, J.C., Tanaka, H. 2000. Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol., 12(3-5), 207-218.
Okuda, K., Oka, K., Onda, A., Kajiyoshi, K., Hiraoka, M., Yanagisawa, K. 2008. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J. Chem. Technol. Biotechnol., 83(6), 836-841.
Ono, E., Cuello, J.L. 2007. Carbon dioxide mitigation using thermophilic cyanobacteria. Biosys. Eng., 96(1), 129-134.
Ono, E., Cuello, J.L. 2006. Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosys. Eng., 95(4), 597-606.
Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R.L., Inomata, H. 2009. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresour. Technol., 100(21), 5237-5242.
Packer, M. 2009. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 37(9), 3428-3437.
Panesar, P.S., Marwaha, S.S., Kennedy, J.F. 2006. Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biot., 81(4), 623-635.
Posten, C. 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci., 9(3), 165-177.
Pulz, O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol., 57(3), 287-293.
Pulz, O., Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 65(6), 635-648.
Quinn, J.C., Yates, T., Douglas, N., Weyer, K., Butler, J., Bradley, T.H., Lammers, P.J. 2012. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour. Technol., 117(0), 164-171.
Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C. 2010. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell, 9(4), 486-501.
Raja, R., Hemaiswarya, S., Kumar, N.A., Sridhar, S., Rengasamy, R. 2008. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol., 34(2), 77-88.
Rangel-Yagui, C.D., Danesi, E.D.G., de Carvalho, J.C.M., Sato, S. 2004. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour. Technol., 92(2), 133-141.
Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A. 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol., 98, 560-564.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M. 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J. Chem. Technol. Biotechnol., 83(6), 842-848.
Raven, J.A. 1997. The role of marine biota in the evolution of terrestrial biota: Gases and genes - Atmospheric composition and evolution of terrestrial biota. Biogeochemistry, 39(2), 139-164.
Raven, J.A., Geider, R.J. 2006. Temperature and algal growth. New Phytol., 110(4), 441-461.
Recht, L., Zarka, A., Boussiba, S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol., 94(6), 1495-1503.
Reitan, K.I., Rainuzzo, J.R., Olsen, Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol., 30, 972-979.
Renaud, S.M., Thinh, L.V., Lambrinidis, G., Parry, D.L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214.
Rismani-Yazdi, H., Haznedaroglu, B.Z., Bibby, K., Peccia, J. 2011. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12, 148.
Rupprecht, J. 2009. From systems biology to fuel-Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J. Biotechnol., 142(1), 10-20.
Ryu, H.J., Oh, K.K., Kim, Y.S. 2009. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J. Ind. Eng. Chem., 15(4), 471-475.
Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G., Cerón, M.C., Pérez-Parra, J., Molina-Grima, E. 2008. Biomass and lutein productivity of Scenedesmus almeriensis:influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol., 79, 719-729.
Saitou, N., Nei, M. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
Service, R.F. 2007. Cellulosic ethanol - Biofuel researchers prepare to reap a new harvest. Science, 315(5818), 1488-1491.
Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A look back at the U.S. Department of Energy's aquatic species program: biodiesel from algae. Nat. Renewable Energy Lab., USA.
Sherwood, A.R., Presting, G.G. 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol., 43, 605-608.
Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylides, C., Li-Beisson, Y., Peltier, G. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol., 11, 7.
Sivakumar, G., Vail, D.R., Xu, J.F., Burner, D.M., Lay, J.O., Ge, X.M., Weathers, P.J. 2010. Bioethanol and biodiesel: Alternative liquid fuels for future generations. Eng. Life Sci., 10(1), 8-18.
Spalding, M.H. 2008. Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J. Exp. Bot., 59(7), 1463-1473.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng., 101(2), 87-96.
Stanier, R.Y., Kunisawa, R., Mandel, M., G., C.-B. 1971. Purification and properties of unicellular blue-green algae (order Chroococales). Bacterological rev. 35(2), 171-205.
Stewart, C., Hessami, M.A. 2005. A study of methods of carbon dioxide capture and sequestration--the sustainability of a photosynthetic bioreactor approach. Energy Convers. Manage., 403-420.
Su, C.H., Giridhar, R., Chen, C.W., Wu, W.T. 2007. A novel approach for medium formulation for growth of a microalga using motile intensity. Bioresour. Technol., 98(16), 3012-3016.
Su, C.M., Hsueh, H.T., Chen, H.H., Chu, H. 2012. Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere, 88(6), 706-711
Sukenik, A. 1991. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour. Technol., 35(3), 263-269.
Sun, Y., Cheng, J.Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 83(1), 1-11.
Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C. 1999. Isolation of a new highly CO2 tolerant fresh water microalga Chlorella sp. KR-1. Renew. Energy, 16(1-4), 1019-1022.
Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, C.R. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol., 101(15), 5892-5896.
Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.
Taraldsvik, M., Myklestad, S.M. 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur. J. Phycol., 35(2), 189-194.
Turpin, D.H. 1991. Effects of Inorganic N Availability on algal photosynthesis and carbon metabolism. J. Phycol., 27(1), 14-20.
Ueda, R., Hirayama, S., Sugata, K., Nakayama, H. 1996. Process for the production of ethanol from microalgae. US Patent 5,578,472.
Ugwu, C.U., Aoyagi, H., Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol., 99(10), 4021-4028.
Ugwu, C.U., Ogbonna, J.C., Tanaka, H. 2002. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl. Microbiol. Biotechnol., 58(5), 600-607.
Urrutia, I., Serra, J.L., Llama, M.J. 1995. Nitrate Removal from Water by Scenedesmus obliquus Immobilized in Polymeric Foams. Enzyme Microb. Technol., 17(3), 200-205.
Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C.J., Goderis, B., Jacobs, P.A., Sels, B.F. 2010. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem., 12(9), 1560-1563.
Viskari, P.J., Colyer, C.L. 2003. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal. Biochem., 319(2), 263-271.
Vonshak, A., Abeliovich, A., Boussiba, A., Arad, S., Richmond, A. 1982. Production of Spirulina biomass: effects of environmental factors and population density. Biomass Bioenerg., 2 175-185.
Wang, B., Li, Y., Wu, N., Lan, C.Q. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol., 79, 707-718.
Wang, B., Liu, C.Q., Wu, Y. 2005. Effect of heavy metals on the activity of external carbonic anhydrase of microalga Chlamydomonas reinhardtii and microalgae from karst lakes. Bull. Environ. Contam. Toxicol., 74(2), 227-233.
Wang, G.Y., Wang, X., Liu, X.H. 2011. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J. Integ. Plant Biol., 53(3), 246-252.
Wargacki, A.J., Leonard, E., Win, M.N., Regitsky, D.D., Santos, C.N.S., Kim, P.B., Cooper, S.R., Raisner, R.M., Herman, A., Sivitz, A.B., Lakshmanaswamy, A., Kashiyama, Y., Baker, D., Yoshikuni, Y. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 335(6066), 308-313.
Wen, Z., Johnson, M.B. 2009. Microalgae as a feedstock for biofuel production. Virginia Cooperative Extension Pub, 442-886.
Wijffels, R.H., Barbosa, M.J. 2010. An Outlook on Microalgal Biofuels. Science, 329(5993), 796-799.
Xia, J.R., Gao, K.S. 2005. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J. Integ. Plant Biol., 47(6), 668-675.
Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., Rana, V. 2004. Enhancement of biogas production from solid substrates using different techniques - a review. Bioresour. Technol., 95(1), 1-10.
Yamada, T., Sakaguchi, K. 1982. Comparative Studies on Chlorella Cell-Walls - Induction of Protoplast Formation. Archives Microbiol., 132(1), 10-13.
Yang, Y., Gao, K.S. 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol., 15(5), 379-389.
Yeh, K.L., Chang, J.S. 2011. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol. J., 6(11), 1358-1366.
Yeh, K.L., Chang, J.S., Chen, W.M. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng. Life Sci., 10(3), 201-208.
Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 101(1), S71-S74.
You, T., Barnett, S.M. 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J., 19(3), 251-258.
Yue, L.H., Chen, W.G. 2005. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers. Manag., 46(11-12), 1868-1876.
Yule, B.L., Roberts, S., Marshall, J.E.A. 2000. The thermal evolution of sporopollenin. Org. Geochem., 31(9), 859-870.
Zhang, K., Kurano, N., Miyachi, S. 2002. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosys. Eng., 25(2), 97-101.
Zhao, X.B., Zhou, Y.J., Liu, D.H. 2012. Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresour. Technol., 105, 160-168.
Zheng, Y., Chen, Z., Lu, H., Zhang, W. 2011. Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. African J. Biotechnol., 10(10), 1888-1901.
Zittelli, G.C., Lavista, F., Bastianini, A., Rodolfi, L., Vincenzini, M., Tredici, M.R. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp cultures in outdoor tubular photobioreactors. J. Biotechnol., 70(1-3), 299-312.