簡易檢索 / 詳目顯示

研究生: 郭維鈞
Kuo, Wei-Chun
論文名稱: 微槽內爆震焰通過二維突擴之傳遞特性
Transmission of Detonation Wave through a 2-D Sudden Expansion in a Micro-Channel
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 136
中文關鍵詞: 微燃燒緩燃焰轉爆震焰微爆震爆震焰傳遞爆震波繞射重新引燃機制
外文關鍵詞: microcombustion, DDT, microdetonics, detonation transmission, detonation diffraction, re-initiation
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分為兩大主題。在第一個主題中,利用點火與相機觸發時點之時間延遲量輔以局部高速攝影成功首次解析兩透明平板所構成之260 μm 間隙內,乙烯/氧氣反應波由中心引燃往外環狀擴張直至產生爆震焰之動態。反應波發展初期距離點火0 μs 至60 μs,此時火焰以平滑對稱之環狀進行擴張。當距點火60至130 μs,受到火焰不穩定性影響,火焰表面形成許多褶皺之花瓣狀環狀反應波前,同時壁面黏滯效應而受到阻滯,致使壓力提升。在點火後135 μs 時,可以發現在火焰面前端隨機位置產生了局部爆炸,反應波隨即由緩燃焰(deflagration)轉變為爆震焰(detonation) 傳遞,透過高解析度顯影於反應波前所觀察到之細胞結構即驗證了爆震焰之產生。此外與120 μm 微間隙結果比較可知,DDT半徑與間隙大小成正相關。
    在第二個主題中,利用高速攝影、碳膜顯影(soot film visualization)方式探討乙烯/氧氣爆震焰在增加氮氣稀釋或改變當量比條件下,通過突擴時之速度變化、傳遞模式及重新引燃機制。研究發現隨著燃氣比例的改變,爆震焰可以兩種爆震焰模態傳遞通過微槽突擴。第一類為在氮氣稀釋β=0.2以下或當量比Φ=0.7以上時,爆震焰在通過突擴時減速,但於寬槽傳遞40 mm內之距離內又重新加速為C-J爆震焰。經由碳膜顯影輔以觀察可知,在此模式下爆震焰之重新引燃機制是由於震波反射之三相點壓縮點火所致。第二類為氮氣稀釋β=0.3至0.6或當量比Φ=0.6至0.5,爆震焰在通過突擴減速後,需再經前類3-4倍距離始能再加速至近C-J速度。此模式由碳膜顯影觀察知此時重新引燃機制為寬槽內壓力累積所產生的DDT過程。最後當氮氣稀釋繼續增加或當量比繼續往貧油方向減少,則可在窄槽內觀察到兩種緩燃焰傳遞模式。

    Two subjects were included in this research. In first part, we analyzed a circular propagating reaction wave of stoichiometric ethylene/oxygen mixtures in a 260μm gap. To analyze the transmission of circular reaction wave in micro gap, full frame image of the flame at different instants were taken by adjusting the time delay between ignition and camera trigger timing. High speed cinematography on a strip region encompassing the plate center was also performed to quantify the expanding rate of the circular flame. The result shows two stages of flame acceleration. In first stage, the flame became wrinkled soon after ignition due to the instabilities, further acceleration due to the choking effect of the micro gap in the unburned gas region was observed in the later stage. Local explosions in the flame front due to the pressure accumulation were clearly visualized at 135 μs after ignition and cell structures were observed in the detonation fronts. We also compared the result to a 120 μm gap, it shows DDT radius has positive correlation with gap size.

    In second part, detonation wave transmission across a sudden expansion in a millimeter-scale channel was experimentally studied using high speed cinematography and soot film visualization. The effect of nitrogen concentration in stoichiometric ethylene/oxygen enriched air mixture (dilution ratio, β) and fuel lean ethylene/oxygen (equivalence ratio, Φ) on the variation of detonation wave propagation velocity was investigated. Two propagation modes were characterized based on the velocity evolutions of the reaction front. For mixtures with β less than 0.2 or Φ larger than 0.7, detonation wave decelerated as it propagated across the sudden expansion and re-accelerated to a near C-J velocity, slightly higher than that in the narrow channel within 40 mm. From the soot film visualization, we found the detonation re-initiation mechanism in wider channel is owing to shock reflection. And detonation wave tooks a distance 3-4 times longer to re-accelerate to a near C-J velocity after it traveled across the sudden expansion, while β is between 0.3-0.6 or Φ between 0.5-0.6. And the re-initiation mechanism is onset by DDT.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 兩平行板微間隙內環狀焰發展及DDT機制 2 突擴微槽內爆震焰傳遞與重新引燃機制 5 1-3 研究目的 8 1-4 本文架構 9 第二章 實驗設備及方法 10 2-1 點火系統 10 2-2 供氣系統 12 電子式質流量控制器 12 孔板式質流量控制器 13 皂泡式流量校正 14 不確定性分析 17 2-3 取像系統 19 2-4 拍攝方法與流程 21 不同時點下反應波單次觸發拍攝流程 21 以高速攝影量測反應波傳遞速度之流程 24 2-5 紋影視流法 25 2-6 碳膜顯影法 27 2-7 理論爆震焰傳遞速度計算 28 第三章 兩平板微間隙內環狀反應波之傳遞特性 32 3-1 微間隙組合 32 3-2 260 μm 微間隙內化學當量乙烯/氧氣焰之環狀傳遞 34 3-3 120 μm 微間隙內化學當量乙烯/氧氣焰之環狀傳遞 45 3-4 間隙大小對環狀 DDT 之影響 48 3-5 小結 49 第四章 突擴微槽內乙烯/富氧空氣反應波之傳遞特性 51 4-1 微槽設計 51 4-2 化學當量乙烯/氧氣爆震焰通過具突擴微管槽之顯影解析 54 4-3 氮氣稀釋量對於爆震焰通過突擴傳遞特性之影響 61 4-4 氮氣稀釋量對於緩燃焰通過突擴傳遞特性之影響 97 4-5 小結 102 第五章 突擴微槽內貧油乙烯/氧氣反應波之傳遞特性 104 5-1 當量比對爆震焰通過突擴微槽傳遞特性之影響 104 5-2 當量比對於緩燃焰通過突擴傳遞特性之影響 116 5-3 小結 120 第六章 結論與未來展望 122 6-1 結論 122 6-2 未來展望 123 參考文獻 125 附錄A 乙烯、氧氣及氮氣於各式質流量計之校正曲線 132 附錄B 微管槽幾何工程圖 134

    [1] V. Akkerman, V. Bychkov, A. Petchenko, and L.E. Eriksson (2006), Accelerating Flames in Cylindrical Tubes with Nonslip at the Walls, Combustion and Flame 145(1-2), 206-219.
    [2] I. Brailovsky and G.I. Sivashinsky (2000), Hydraulic Resistance as a Mechanism for Deflagration-to-Detonation Transition, Combustion and Flame 122(4), 492-499.
    [3] V. Bychkov and V. Akkerman (2006), Explosion Triggering by an Accelerating Flame, Physical Review E 73(6), 066305.
    [4] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko, and L.E. Eriksson (2007), Flame Acceleration in the Early Stages of Burning in Tubes, Combustion and Flame 150(4), 263-276.
    [5] V. Bykov, I. Goldfarb, V. Gol'dshtein, L. Kagan, and G. Sivashinsky (2004), Effects of Hydraulic Resistance and Heat Losses on Detonability and Flammability Limits, Combustion Theory and Modelling 8(2), 413-424.
    [6] L. Kagan and G. Sivashinsky (2003), The Transition from Deflagration to Detonation in Thin Channels, Combustion and Flame 134(4), 389-397.
    [7] L. Kagan and G. Sivashinsky (2010), On the Transition from Deflagration to Detonation in Narrow Tubes, Flow Turbulence and Combustion 84(3), 423-437.
    [8] D.M. Valiev, V. Bychkov, V. Akkerman, and L.E. Eriksson (2009), Different Stages of Flame Acceleration from Slow Burning to Chapman-Jouguet Deflagration, Physical Review E 80(3), 036317.
    [9] M.H. Wu, M.P. Burke, S.F. Son, and R.A. Yetter (2007), Flame Acceleration and the Transition to Detonation of Stoichiometric Ethylene/Oxygen in Microscale Tubes, Proceedings of the Combustion Institute 31, 2429-2436.
    [10] M.H. Wu and C.Y. Wang (2011), Reaction Propagation Modes in Millimeter-Scale Tubes for Ethylene/Oxygen Mixtures, Proceedings of the Combustion Institute 33, 2287-2293.
    [11] Y.B. Zel'dovich, S.M. Kogarko, and N.N. Simonov (1957), An Experimental Investigation of Spherical Detonation in Gases, Sov. Phys. Tech. Phys 1, 1689-1713.
    [12] J.K. Wang and M.H. Wu, Numerical Study on Deflagration-to-Detonation Transition of Hydrogen/Oxygen Mixtures in Small Tubes, presented at the 8th Asia Pacific Conference on Combustion, Hyderabad India, December 10-12, 2010.
    [13] R. Sorin, R. Zitoun, B. Khasainov, and D. Desbordes (2009), Detonation Diffraction through Different Geometries, Shock Waves 19(1), 11-23.
    [14] R. Coppinger, Russia Achieves Low-Energy Ignition of Pulse Detonation Engine, July 16, 2007.
    [15] S. Eidelman, W. Grossmann, and I. Lottati (1991), Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept, Journal of Propulsion and Power 7(6), 857-865.
    [16] A.K. Sehra and W. Whitlow (2004), Propulsion and Power for 21st Century Aviation, Progress in Aerospace Sciences 40(4-5), 199-235.
    [17] E. Wintenberger and J.E. Shepherd (2006), Model for the Performance of Airbreathing Pulse-Detonation Engines, Journal of Propulsion and Power 22(3), 593-603.
    [18] C.J. Yan, W. Fan, X.Q. Huang, Q. Zhang, and L.X. Zheng (2003), Exploratory Study on New Pulse Detonation Engines, Progress in Natural Science 13(2), 88-94.
    [19] 郭維鈞,吳明勳,定壓、定容與爆震燃燒加熱過程之熱力循環效率分析,2010 中華民國燃燒學會第二十屆學術研討會,台灣台南,2月26日, 2010。
    [20] 王長禹,圓形截面管內之預混焰傳遞模式解析,國立成功大學碩士論文,2010。
    [21] Y.A. Gostintsev, A.G. Istratov, and Y.V. Shulenin (1988), Self-Similar Propagation of a Free Turbulent Flame in Mixed Gas Mixtures, Combust Explos, Shock Waves 24, 563-568.
    [22] L. Filyand, G.I. Sivashinsky, and M.L. Frankel (1994), On Self-Acceleration of Outward Propagating Wrinkled Flames, Physica D: Nonlinear Phenomena 72(1-2), 110-118.
    [23] V. Karlin and G. Sivashinsky (2006), The Rate of Expansion of Spherical Flames, Combustion Theory and Modelling 10(4), 625-637.
    [24] W.K. Kim, T. Mogi, and R. Dobashi, Effects of Hydrogen Addition on Flame Propagation and Blast Wave Generation During Explosion of Methane-Air Mixtures, presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems Irvine, USA, July 24-29, 2011.
    [25] L. Kagan and G. Sivashinsky (2008), Autoignition Due to Hydraulic Resistance and Deflagration-to-Detonation Transition, Combustion and Flame 154(1-2), 186-190.
    [26] O. Peraldi, R. Knystautas, and J.H. Lee (1988), Criteria for Transition to Detonation in Tubes, Symposium (International) on Combustion 21(1), 1629-1637.
    [27] I.O. Moen, M. Donato, R. Knystautas, and J.H. Lee (1980), Flame Acceleration Due to Turbulence Produced by Obstacles, Combustion and Flame 39(1), 21-32.
    [28] A. Teodorczyk, P. Drobniak, and A. Dabkowski (2009), Fast Turbulent Deflagration and Ddt of Hydrogen-Air Mixtures in Small Obstructed Channel, International Journal of Hydrogen Energy 34(14), 5887-5893.
    [29] A. Teodorczyk, J.H.S. Lee, and R. Knystautas (1990), The Structure of Fast Turbulent Flames in Very Rough, Obstacle Filled Channels, Proc. Comb. Inst. 31(2), 735-741.
    [30] G. Ciccarelli, C.J. Fowler, and M. Bardon (2005), Effect of Obstacle Size and Spacing on the Initial Stage of Flame Acceleration in a Rough Tube, Shock Waves 14(3), 161-166.
    [31] G. Ciccarelli and S. Dorofeev (2008), Flame Acceleration and Transition to Detonation in Ducts, Progress in Energy and Combustion Science 34(4), 499-550.
    [32] B.W. Skew (1967), The Perturbed Region Behind a Diffracting Shock Wave, J. Fluid Mech 29, 705-719.
    [33] B.W. Skew (1966), The Shape of a Diffracting Shock Wave, J. Fluid Mech 29(2), 297-304.
    [34] J.E. Shepherd, J. Austin, T. Chao, E. Wintenberger, S. Jackson, and M. Cooper, Detonation Initiation, Diffraction, and Impulse, presented at the in The 13th ONR Propulsion Conference, Minneapolis, MN, USA, 2000.
    [35] E.G. Pantow, M. Fischer, and T. Kratzel (1996), Decoupling and Recoupling of Detonation Waves Associated with Sudden Expansion, Shock Waves 6(3), 131-137.
    [36] S. Ohyagi, T. Obara, S. Hoshi, P. Cai, and T. Yoshihashi (2002), Diffraction and Re-Initiation of Detonations Behind a Backward-Facing Step, Shock Waves 12(3), 221-226.
    [37] V.F. Nikitin, V.R. Dushin, Y.G. Phylippov, and J.C. Legros (2008), Pulse Detonation Engines: Technical Approaches, Acta Astronautica 64(2-3), 281-287.
    [38] C.J. Wang and S.L. Xu (2007), Re-Initiation Phenomenon of Gaseous Detonation Induced by Shock Reflection, Shock Waves 16(3), 247-256.
    [39] C. Guo, C. Wang, S. Xu, and H. Zhang (2007), Cellular Pattern Evolution in Gaseous Detonation Diffraction in a 90°-Branched Channel, Combustion and Flame 148(3), 89-99.
    [40] D.H. Edwards, G.O. Thomas, and M.A. Nettleton (1978), The Diffraction of Planar Detonation Wave at an Abrupt Area Change, J. Fluid Mech 95(1), 79-96.
    [41] I.O. Moen, M. Donato, R. Knystautas, and J.H. Lee (1981), The Influence of Confinement on the Propagation of Detonations near the Detonability Limits, Symposium (International) on Combustion 18(1), 1615-1622.
    [42] B. Khasainov, H.N. Presles, D. Desbordes, P. Demontis, and P. Vidal (2005), Detonation Diffraction from Circular Tubes to Cones, Shock Waves 14(3), 679-685.
    [43] S.B. Murray and J.H. Lee (1983), On the Transformation of Planar Detonation to Cylindrical Detonation, Combustion and Flame 52, 269-289.
    [44] A. Levy (1964), The Accuracy of the Bubble Meter Method for Gas Flow Measurements, Journal Of Scientific Instruments 41(7), 449-453.
    [45] M.H. Wu, Develpment and Experimental Analyses of Meso and Micro Scale Combustion Systems, Ph.D. Dissertation, Pennsylvania State University, 2007.
    [46] Y.B. Zel'dovich (1940), The Theory of the Propagation of Detonation in Gaseous Systems, Experimental and Theoretical Physics 10, 542-568.
    [47] K. Nagai, T. Okabe, K. Kim, T. Yoshihashi, T. Obara, and S. Ohyagi (2009), A Study on Ddt Processes in a Narrow Channel, Shock waves: 26th International Symposium on Shock Waves part IV, 203-208.
    [48] D.L. Chapman (1899), On the Rate of Explosion of Gas, Philosophical Magazine 47, 90-103.
    [49] B.J. McBride and S. Gordon (1976), Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273.
    [50] B.J. McBride and S. Gordon (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications Ii. User's Manual and Program Description, NASA RP-1311-P2.
    [51] B.J. McBride and S. Gordon (1994), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP-1311.
    [52] Y.A. Gostintsev, V.E. Fortov, and Y.V. Shatskikh (2004), Self-Similar Propagation Law and Fractal Structure of the Surface of a Free Expanding Turbulent Spherical Flame, Doklady Physical Chemistry 397(1), 141-144.
    [53] Y.A. Gostintsev, A.G. Istratov, and Y.V. Shulenin (1988), Self-Similar Propagation of a Free Turbulent Flame in Mixed Gas Mixtures, Combustion, Explosion, and Shock Waves 24(5), 563-569.
    [54] V. Karlin and G. Makhviladze (2003), Computational Analysis of the Steady States of the Sivashinsky Model of Hydrodynamic Flame Instability, Combustion Theory and Modelling 7(1), 87-108.
    [55] G.I. Sivashinsky (2002), Some Developments in Premixed Combustion Modeling, Proceedings of the Combustion Institute 29(2), 1737-1761.
    [56] 王俊凱,預混焰於微管槽內加速機制之研究,國立成功大學碩士論文, 2010。
    [57] J.A. Fay (1959), Two-Dimensional Gaseous Detonations: Velocity Dificit, Physics of Fluid 2, 283-289.
    [58] H. Matsui and J.H. Lee (1979), On the Measure of the Relative Detonation Hazards of Gaseous Fuel-Oxygen and Air Mixtures, Symposium (International) on Combustion 17(1), 1269-1280.
    [59] A. Makris, T.J. Oh, J.H.S. Lee, and R. Knystautas (1994), Critical Diameter for the Transmission of a Detonation Wave into a Porous Medium, Symposium (International) on Combustion 25(1), 65-71.
    [60] G.O. Thomas (2009), Flame Acceleration and the Development of Detonation in Fuel–Oxygen Mixtures at Elevated Temperatures and Pressures, Journal of Hazardous Materials 163(2-3), 783-794.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE