| 研究生: |
蔡明勳 Tsai, Ming-Hsun |
|---|---|
| 論文名稱: |
探討聚四甲基一戊烯在對二甲苯溶液中Form Ⅰ和Form Ⅲ晶相的成長習性 The growth habits of crystalline FormⅠand Form Ⅲ of isotactic poly(4-methyl-1-pentene) in the p-xylene solution |
| 指導教授: |
阮至正
Ruan, jr-jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 中間相網路 、聚4-甲基-1-戊烯 、結晶成長 、溶液結晶 |
| 外文關鍵詞: | mesophase network, P4MP, crystal growth, solution crystallization |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以電子顯微鏡與X-ray 繞射探討聚4-甲基-1-戊烯(poly(4-methyl-l-pentene))(P4MP)在稀薄對二甲苯溶液中(0.04% p-xylene solution),FormⅠ與Form Ⅲ晶相的成長。實驗結果發現,受到溶劑環境的影響,在85℃以上的溫度,呈現網路型態的中間相是P4MP分子穩定的聚集狀態。在有Form I晶相的晶核存在的情形下,Form I晶相可在55℃至65℃之間,形成方形單晶或於中間相網路中成長。將溶液以液態氮從140℃急速冷卻,發現FormⅠ晶相依然能沿著中間相的網路快速發展。由此實驗觀察可知,當於稀薄溶液中分子的擴散行為,因急速冷卻而成為一影響結晶成長的因素時,由單一晶核發展的結晶成長較不易發生。而藉助中間相的結晶成長,因不受擴散的限制,而成為主要的相變化路徑。
在45℃附近,即使有Form I的晶核及中間相網路,亦觀察到經由均質成核(homogeneous nucleation),所發展出Form III晶相的方形單晶。隨著Form III單晶的成長,中間相網路逐漸消失。因此可知,中間相網路僅可選擇性的幫助Form I晶相的成長。在Form III晶相的成長過程中,則會發生中間相的溶解。
在急速冷卻下,除了Form I晶相以外,亦發現一未知晶相的成長。此未知晶相會在升溫至55℃時,在有Form I晶核存在下轉變為Form I晶相。
在對二甲苯溶液中,Form Ⅲ晶相在85℃以上會溶解形成中間相,而觀察到網路的出現。若在熔融態中,Form Ⅲ晶相會經歷一固固相變化轉變至Form I晶相,因為Form I晶相是在熔融態中唯一穩定存在的晶相。
經由這樣的研究觀察可知,在受到溶劑分子的影響下,Form Ⅲ晶相及中間相,可以分別有穩定存在的溫度範圍。但中間相的形成,選擇性的幫助較不穩定的Form I晶相成長,而使得Form I晶相在低溫,有另一成長的路徑。
The crystallization behavior of poly(4-methylene-1-pentene) (P4MP) in the dilute p-xylene solution was studied via X-ray diffraction and transmission electron microscopy (TEM) in this research. In the range of temperature from 60℃ to 75℃, the residual Form I nuclei were able to initiate the growth of square single crystal in the 0.04% p-xylene solution. Nevertheless, as being quenched by liquid nitrogen, Form I crystal was recognized to develop within the mesophase network, instead from the nuclei. Thus it is known that as the diffusion of molecules in the dilute solution becomes a server issue upon quenching, crystallization from independent nuclei might not be preferred. Instead, crystal growth via the reorganization of mesophase can become a dominative way since much less molecular transportation is required.
Around 45℃, the Form Ⅲ square single crystals were able to grow via homogeneous nucleation process, and lead to the consumption of mesophase network. This means the mesophase can only selectively help the growth of Form I crystal. The revealed crystal growth kinetics suggests that the Form Ⅲ crystals are more stable than the state of Form I at this temperature range. The Form Ⅲ crystal can dissolve into mesophase as being heated over 85℃. In the bulk state, it is known that the Form Ⅲ crystals can only transform to Form I through solid-solid transition during heating.
Upon quenching, an unknown crystalline phase can be found except for the Form I crystals. This unknown crystalline form can transfer to Form I at 55℃ with the presence of the Form I nuclei. Since in the bulk state, only Form I crystalline form can be found, the growth of these ordered forms is clearly attributed to the presence of solvent environment. Since the solvent environment mainly affects the interfacial energy of crystals and preferred helical conformation of dissolved molecular chains, this research might reveal the importance of these two influential factors for possible crystallization routes.
[1] J. H. Griffith, B. G. Ranby, J. Polym. Sci., Vol. 44,
pp.369, 1960.
[2] C. De Rosa, D. Capitani, S. Cosco, Macromolecules, Vol.
30, pp.8322, 1997.
[3] R. B. Isaacson, I. Kirstenbaum, W. C. Feist, J. Appl.
Polym. Sci.,Vol. 8, pp.2789, 1964.
[4] K. J. Kumbhani, E. G. Kent, in Advances in Polymer
Blends and Alloys Technology, Vol. 2. edited by M. A.
Kohudic , (Tecnomic Publishing Co. Inc., 1988).
[5] A. C. Puleo, D. R. Paul, P. K. Wong, Polymer, Vol. 30,
pp.1357, 1989.
[6] Y. V. Kisnin, Encyclopedia of Polymer Science and
Engineering, Vol. 9, pp.707, edited by H. F. Mark and
N. M. Bikales (J. Wiley and Sons: New York, 1987).
[7] 蔡宏斌、林建興, TPX塑膠, 高分子工業出版社, 1993.
[8] G. Charlet, H. Phuong-Nguyen, G. Delmas, Macromolecules,
Vol. 17, pp.1200, 1984.
[9] A. Keller, Faraday Discuss., Vol. 101, pp.1, 1995.
[10] Y. Tanda, N. Kawasaki, K. Imida, M. Takayanagi, Rep.
Prog. Polym. Phys. Jpn., Vol. 9, pp.165, 1966.
[11] N. Kawasaki, M. Takayanagi, Rep. Prog. Polym. Phys.
Jpn., Vol. 10, pp.337, 1967.
[12] M. Takayanagi, N. Kawasaki, J. Macromol. Sci. Part B,
Vol. 1, pp.741, 1967.
[13] J. Ruan , A. Thierry, B. Lotz, Polymer, Vol. 47,
pp.5478, 2006.
[14] G. Charlet, G. Delmas, F. J. Revol, R. St. J. Manley,
Polymer, Vol. 25, pp.1613, 1984.
[15] G. Charlet, G. Delmas, Polymer, Vol. 25, pp.1619, 1984.
[16] A. Nakajima, S. Hayashi, T. Taka, N. Utsumi, Kolloid-
Z. Z. Polym., Vol. 234, pp.1097, 1969.
[17] A. Nakajima, S. Hayashi, T. Taka, Kolloid-Z. Z.
Polym., Vol. 233, pp.869, 1969.
[18] G. Charlet, G. Delmas, Polym. Bull., Vol. 6, pp.367,
1982.
[19] M. S. Aharoni, G. Charlet, G. Delmas, Macromolecules,
Vol. 14, pp.1390, 1981.
[20] P. Pradère, J.-F. Revol, R. St. John Manley,
Macromolecules, Vol. 21, pp.2747, 1988.
[21] G. Reiter, J.-U. Sommer, Phys. Rev. Lett., Vol. 80,
pp.3771, 1998.
[22] G. Reiter, J.-U. Sommer, J. Chem. Phys., Vol. 112,
pp.4376, 2000.
[23] G. Natta, P. Corradini, W. Bassi, Rend. Fis. Acc.
Lincei., Vol. 19, pp.404, 1955.
[24] F. C. Frank, A. Keller, A. O’Connor, Philos. Mag.,
Vol. 8, pp.200, 1959.
[25] I. W. Bassi, O. Bonsigno. G. P. Lorenzi, P. Pino, P.
Corradin, P. A.Temussi, J. Polym. Sci. Pol. Phys.,
Vol. 9, pp.193, 1971.
[26] H. Kusanagi, M. Takase, Y. Chatani, H. Tadokoro, J.
Polym. Sci. Pol. Phys., Vol. 16, pp.131, 1978.