| 研究生: |
盧奕中 Lu, Yi-Chung |
|---|---|
| 論文名稱: |
利用深度學習方法設計無界面熱阻熱遮罩 Design ITR-free Thermal Cloak by Deep Learning Method |
| 指導教授: |
楊瑞珍
Yang, Ruey-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 單層熱遮罩 、界面熱阻 、深度學習 、經驗公式 、熱管理 |
| 外文關鍵詞: | Single-layer thermal cloak, Interfacial thermal resistance, Deep learning, Empirical formula, Thermal management |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶片小型化已成為現代科技的趨勢,不可避免導致熱密度急遽上升,因此「熱管理」成為產業中重要的一環。熱遮罩能夠保護內部區域不受外部溫度影響,並且能夠維持外部溫度場不變。至今,熱遮罩已經透過轉換熱力學和雙層理論得以實現。然而,兩者皆須使用兩種以上的材料來達到保護的效果,這將不可避免地導致「界面熱阻」的問題產生。「界面熱阻」會導致溫度不連續進一步造成遮罩的保護效果不佳,但過往的研究都忽略了這個問題。本研究提出透過等效熱導率理論設計單一材料無界面熱阻熱遮罩。採用單一材料除了能夠避免界面熱阻產生的問題,也增加了對於材料選擇的多元性。此外,我們也發現等效熱導率理論並不適用於高度較高的遮罩保護範圍,因此本研究利用深度學習方法改良此理論的缺點,使其可不受高度之限制。另外,深度學習方法也可以用於設計任何遮罩形狀,可有效應用於保護不同形狀之元件。由於原先設計之無界面熱阻熱遮罩頂端為開放式設計,若是要實際應用於保護內部電子元件其效果可能有限,因此本研究利用深度學習方法在其頂部加入一層遮頂,結果表明還可降低熱遮罩整體之高度。最後,由於利用深度學習方法需先計算大量數據,增加計算時間成本,因此本研究也提出一經驗公式用於設計圓形無界面熱阻熱遮罩,結果表明確實可以利用此公式計算出相較於等效熱導率理論還更精準之圓形無界面熱阻熱遮罩。總結來說,本研究提出的方法不僅在目前的研究範圍內取得了顯著的成果,還具有廣泛的應用潛力。這些方法可以延伸至各種熱傳遞問題,包括建築物的熱能管理、工業製程中的熱交換系統,以及能源產業中的熱效率提升。因此,透過不斷的研究和改進,這些技術將能夠滿足不同行業對熱管理的需求,推動相關領域的創新和進步。
To date, thermal cloaking has been realized through transformation of thermodynamics and bilayer theory. However, both approaches require the use of multiple materials to achieve the cloaking, which inevitably leads to the issue of "interfacial thermal resistance". This resistance causes temperature discontinuities, which compromise the protective effectiveness of the cloak, an issue often overlooked in previous study. This study proposes a novel design for a single-material thermal cloak that eliminates interfacial thermal resistance by utilizing the concept of equivalent thermal conductivity. By employing a single material, this approach not only avoids the ITR problem but also broadens the range of material choices.
Furthermore, this thesis found that the equivalent thermal conductivity theory becomes less effective for cloaks with larger protective ranges. To address this limitation, this study leverages deep learning methods, which are not constrained by height restrictions. These methods also allow for the design of thermal cloaks in various shapes, enabling effective protection of components with diverse geometries. The original ITR-free cloak design featured an open-top structure, which may limit its practical applications in protecting internal electronic components. Therefore, this study incorporates deep learning to add a top cover layer, demonstrating that it can further reduce the overall height of the thermal cloak. Given that deep learning methods require processing large datasets, leading to increased computational time, this study also proposes an empirical formula for designing circular ITR-free thermal cloaks. The results indicate that this formula can more accurately calculate circular ITR-free cloaks compared to the equivalent thermal conductivity theory.
In conclusion, the methods proposed in this study not only yield significant results within the current research scope but also hold broad application potential. These techniques can be extended to various heat transfer problems, such as thermal management in buildings, industrial heat exchange systems, and improving thermal efficiency in the energy sector. With continued research and refinement, these technologies could meet the thermal management needs of diverse industries, driving innovation and progress in related fields.
參考文獻
1. Leonhardt, U., Optical conformal mapping. Science, 2006. 312(5781): p. 1777-1780.
2. Pendry, J. B., Schurig, D., and Smith, D. R., Controlling electromagnetic fields. Science, 2006. 312(5781): p. 1780-1782.
3. Fan, C., Gao, Y., and Huang, J., Shaped graded materials with an apparent negative thermal conductivity. Applied Physics Letters, 2008. 92(25).
4. Chen, T., Weng, C.-N., and Chen, J.-S., Cloak for curvilinearly anisotropic media in conduction. Applied Physics Letters, 2008. 93(11).
5. Guenneau, S., Amra, C., and Veynante, D., Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 2012. 20(7): p. 8207-8218.
6. Schittny, R., Kadic, M., Guenneau, S., and Wegener, M., Experiments on transformation thermodynamics: molding the flow of heat. Physical Review Letters, 2013. 110(19): p. 195901.
7. Han, T., Bai, X., Gao, D., Thong, J. T., Li, B., and Qiu, C.-W., Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014. 112(5): p. 054302.
8. Han, T., Yang, P., Li, Y., Lei, D., Li, B., Hippalgaonkar, K., and Qiu, C. W., Full‐parameter omnidirectional thermal metadevices of anisotropic geometry. Advanced Materials, 2018. 30(49): p. 1804019.
9. Yeung, W.-S., Yang, F.-Y., and Yang, R.-J., Analysis of a trilayer thermal cloak. AIP Advances, 2020. 10(5).
10. Yang, F.-Y., Hung, F.-S., Yeung, W.-S., and Yang, R.-J., Optimization method for practical design of planar arbitrary-geometry thermal cloaks using natural materials. Physical Review Applied, 2021. 15(2): p. 024010.
11. Zheng, X. and Li, B., Effect of interfacial thermal resistance in a thermal cloak. Physical Review Applied, 2020. 13(2): p. 024071.
12. Han, T., Nangong, J., and Li, Y., ITR-free thermal cloak. International Journal of Heat and Mass Transfer, 2023. 203: p. 123779.
13. Alekseev, G. and Levin, V. An optimization method for the problems of thermal cloaking of material bodies. in Doklady Physics. 2016. Springer.
14. Alekseev, G., Levin, V., and Tereshko, D. Optimization analysis of the thermal cloaking problem for a cylindrical body. in Doklady Physics. 2017. Springer.
15. Alekseev, G. V., Analysis of a two-dimensional thermal cloaking problem on the basis of optimization. Computational Mathematics and Mathematical Physics, 2018. 58: p. 478-492.
16. Alekseev, G., Tereshko, D., and Paklina, E. Optimization method in 2D DC cloaking problems. in 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). 2018. IEEE.
17. Alekseev, G. and Tereshko, D. Optimization-based method of solving 2D thermal cloaking problems. in Journal of Physics: Conference Series. 2019. IOP Publishing.
18. Alekseev, G. V. and Tereshko, D. A., Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices. International Journal of Heat and Mass Transfer, 2019. 135: p. 1269-1277.
19. Xu, Y., Jiang, L., and Qi, X., Machine learning in thermoelectric materials identification: Feature selection and analysis. Computational Materials Science, 2021. 197: p. 110625.
20. Ji, Q., Chen, X., Liang, J., Fang, G., Laude, V., Arepolage, T., Euphrasie, S., Martinez, J. A. I., Guenneau, S., and Kadic, M., Deep learning based design of thermal metadevices. International Journal of Heat and Mass Transfer, 2022. 196: p. 123149.
21. Ji, Q., Qi, Y., Liu, C., Meng, S., Liang, J., Kadic, M., and Fang, G., Design of thermal cloaks with isotropic materials based on machine learning. International Journal of Heat and Mass Transfer, 2022. 189: p. 122716.
22. Alexandru, T.-G., Mantea, T.-A., Pupaza, C., and Velicu, S., Heat transfer simulation for thermal management of electronic components. Proceedings in Manufacturing Systems, 2016. 11(1): p. 15.
23. Dede, E. M., Nomura, T., Schmalenberg, P., and Seung Lee, J., Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects. Applied Physics Letters, 2013. 103(6).
24. Narayana, S. and Sato, Y., Heat flux manipulation with engineered thermal materials. Physical Review Letters, 2012. 108(21): p. 214303.
25. Li, B., Wang, L., and Casati, G., Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 2006. 88(14).
26. Li, Y., Shen, X., Wu, Z., Huang, J., Chen, Y., Ni, Y., and Huang, J., Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Physical Review Letters, 2015. 115(19): p. 195503.
27. Dede, E. M., Zhou, F., Schmalenberg, P., and Nomura, T., Thermal metamaterials for heat flow control in electronics. Journal of Electronic Packaging, 2018. 140(1): p. 010904.
28. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 1958. 65(6): p. 386.
29. El Naqa, I. and Murphy, M. J., What is machine learning? 2015: Springer.
30. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning representations by back-propagating errors. Nature, 1986. 323(6088): p. 533-536.
31. Kingma, D. P. and Ba, J., Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980, 2014.
校內:2027-07-19公開