| 研究生: |
彭薇聿 Peng, Wei-Yu |
|---|---|
| 論文名稱: |
兩階層可維修商品庫存系統批次存貨模式發展 |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理科學系 Department of Industrial Management Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 再訂購點 、存貨 、批次政策 、可維修零件 、備品 、階層 |
| 外文關鍵詞: | reorder point, batch, repairable items, inventory, (s, Q) |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究在探討兩階層可完全維修零件庫存系統之批次存貨政策問題,系統中上層僅含一個維修站,負責系統內所有損壞零件之維修和提供所有下層維修點所需之備品,而下層則含有數個平行且不相同之維修點,負責提供顧客即時之零件替換服務,但不進行損壞零件之維修。下層的各維修點會依據其批次存貨政策決定何時應將其累積之損壞零件送回上層之維修站進行維修,並取回相同數量之備品,而上層之維修站則會依據其批量政策,決定何時開始進行損壞零件的維修。
本研究之目的為決定上層維修站與所有下層各維修點中,最佳的訂貨維修批量與最佳之再訂購點,使得系統內之庫存相關總成本最小。本問題中,存貨相關總成本包含了下層維修點之訂購成本、良好備品和損壞零件之存貨持有成本及缺貨成本,及上層維修站之維修固定成本、良好備品與損壞零件之存貨成本及缺貨成本。本研究中將使重新報酬理論、條件機構和條件期望值求得系統之單位時間期望總相關成本函數,並發展一有效之搜尋方法,在合理計算時間內求得最佳或近似最佳之訂購批量和再訂購點。
本系統在運作上十分複雜,故特用近似分配來描述系統內上游維修站之存貨周期與需求分配,並使用二維加速搜尋之演算法,先求得上游維修站之再維修點與固定維修批量,並在固定此上游維修站決策變數下,找到可以最小化系統內單位總相關成本的各下游維修點固定訂購批量和再訂購點,並回到上一層迴圈重覆運算至收歛為止。依據32個部分因子演算實驗的結果可以發現,近似模式表現良好,且總成本模式對再訂購點可能存在凸性質。下游維修點的缺貨成本會隨因子的改變而大幅變動,為總成本波動的主要來源。部分因子實驗結果亦發現縮減兩階層可維修零件系統本之主要方式為良好的物流政策規劃(階層備品的配置),亦即降低階層存貨價值的增加與縮減前置時間。
none
參考文獻
一丶中文部分
藍淑娟,“兩階層庫存系統備用維修零件最佳模式之發展” ,國立成功大學工業管理研究所碩士論文,民國八十六年六月。
二丶英文部分
Albright, S.C., 1989. An approximation to the stationary distribution of a multi-echelon repairable-item inventory system. Naval Research Logistics 36, 179-195.
Axsäter, S., 1990. Simple solution procedures for a class of two-echelon inventory problems. Operations Research 38 (1), 64-69.
Axsäter, S., 1993a. Exact and approximate evaluation of batch-ordering policies for two-level inventory systems. Operations Research 41 (4), 777-785.
Axsäter, S., 1993b. Optimization of order-up-to-S policies in two-echelon inventory systems with periodic review. Naval Research Logistics 40, 245-253.
Axsäter, S., 1995. Approximate evaluation of batch-ordering policies for a one-warehouse, N non-identical retailer system under compound Poisson demand. Naval Research Logistics 42, 807-819.
Axsäter, S., 1997. Simple evaluation of echelon stock (R, Q) polices for two-level inventory systems. IIE Transactions 29, 661-669.
Axsäter, S., 1998.Evaluation of installation stock based (R, Q)-polices for two-level inventory systems with Poisson demand. Operations Research 46 (3), 135-145.
Axsäter, S., 2000. Exact analysis of continuous review (R, Q) polices for two-echelon inventory systems with compound Poisson demand. Operations Research 48 (5), 686-696.
Bazaraa, M.S., Shatty, C.M., 1979. Nonlinear Programming:Theory & Algorithm. John Wiley & Sons, New York.
Bhat, U.N., 1984. Elements of Applied Stochastic Process. John Wiley & Sons, New York.
Das, C., 1976. Explicit formulas for the order size and the reorder point in certain inventory problems. Naval Research Logistics 22, 25-30.
Donaldson, W., 1974. The allocation of inventory items to lot size/reorder level (Q, r) and periodic review (T, Z) control. Operations Research 25, 481-485.
Graves, S.C., 1985. A multi-echelon inventory model for a repairable item with one-for-one replenishment. Management Science 31 (10), 1247-1256.
Hadley, G., Whitin, T.M., 1963. Analysis of Inventory Systems. Prentice_Hall, Inc., Englewood Cliffs, N.J.
Karlin, S., Taylor, H.M., 1981. A Second Course in Stochastic Process. Academic Press, New York.
Karlin, S., Taylor, H.M., 1998. An Introduction to Stochastic Modeling, 3rd ed. Academic Press, San Diego.
Kim, J., Shin, K., Yu, H., 1996. Optimal algorithm to determine the spare inventory level for a repairable-item inventory system. Computers & Operations Research 23, 289-297.
Lee, H.L., Moinzadeh, K., 1989. A repairable inventory system with diagnostic and repair service. European Journal of Operational Research 40(2), 210-221.
Lee, H.L., Moinzadeh, K., 1987. Operating characteristics of a two-echelon system for repairable and consumable items under batch ordering policy. Naval Research Logistics 34, 365-380.
Lee, H.L., Moinzadeh, K., 1987. Batch size and stocking level in multi-echelon repairable systyems. Management Science 32, 1567-1581.
Muckstdat, J.A., 1973. A model for a multi-item, multi-echelon, multi-indenture inventory system. Management Science 20 (4), 472-481.
Muckstdat, J.A., 1979. A three-echelon, multi-item model for recoverable items. Naval Research Logistics 26, 199-221.
Richards, F.R., 1976. A stochastic model of a repairable inventory system with attrition and random lead times. Operations Research 24, 118-130.
Scarf, H., 1960. The optimality of (S, s) policies in the dynamic inventory Problem. Mathematical Methods in the Social Science. Stanford, Calif: Stanford University Press, Chapter 13.
Schneider, H., 1981. Effects of service-level on order-levels in inventory models. International Journal of Production Research 19(6), 615-631.
Shanker, K., 1981. Exact analysis of a two-echelon inventory system for recoverable item control. Naval Research Logistics 28, 571-560.
Sherbrooke, C., 1968. METRIC:A multi-echelon technique for recoverable item control. Naval Research Logistics 28, 579-601.
Sherbrooke, C., 1971. An evaluator for the number of operational ready aircraft in an multi-echelon supply system. Operations Research 19, 618-635.
Sherbrooke, C., 1986. VARI-METRIC:Improved approximations for multi-indenture, multi-echelon availability models. Operations Research 34, 311-319.
Silver, E.A., Pyke, D.F., Peterson, R., 1998. Inventory Management and Production Planning and scheduling, 3rd ed. John Wiley & Sons, New York.
Simpson, V.P., 1971. An ordering model for recoverable stock items. AIIE Transactions 2, 315-320.
Tijms, H.C., 1983. On the numerical calculation of the reorder point in (s, S) inventory system with gamma distribution lead time demand. Research Report No. 95, Department of Actuarial Sciences and Economics, Vrije University, Amsterdam, Holland.