簡易檢索 / 詳目顯示

研究生: 李友順
Li, You-Shun
論文名稱: 開發臨床骨密度儀之研究
Development of Clinical Ultrasound Bone Densitometry
指導教授: 陳天送
Chen, TainSong
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 50
中文關鍵詞: 骨密度儀骨質疏鬆症超音波
外文關鍵詞: ultrasound, densitometry, Osteoporosis
相關次數: 點閱:211下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要分為三部分,第一部份是發展一套簡易快速的乾式量測系統。利用壓克力及假體進行檢測已評估系統的精確度與準確度,結果顯示出非常高的準確度 (97%) 及低的變異係數 (0.25%)。本系統用來對貼附豬皮的假體進行測試之結果發現,豬皮使得SOS增加。

      第二部份是發展一套能量測骨組織厚度,並能消除軟組織影響的濕式系統。利用上述的雙探頭技術對貼附豬皮的假體進行量測,結果發現,所量測的骨假體厚度準確度很高(正常骨假體98.7%;疏鬆骨假體98.6%)。修正後的SOS準確度高(正常骨假體98.4%;疏鬆骨假體99%)。

      第三部份為活體測試,五名受測者各接受兩套系統的測試。結果顯示,本濕式系統可以計算出腳跟骨的厚度並且有效的消除軟組織對SOS量測的影響。

      綜合以上,假體模擬試驗與人體量測實驗的結果皆顯示出軟組織會導致量測到的SOS增加的趨勢,本研究利用濕式系統的原理可以消除軟組織的效應進而計算出骨組織中的波速。

     The works in this study are divided into three parts. The first part was to develop a convenient and quick dry contact system. We estimate the precision and validity from investigations examining acrylic plastic and bone phantoms. High accuracy (97%) and low stand deviation (0.25%) are show on the results. We apply the dry contact system to the simulation of bone phantom covered with porcine skins. Results show that porcine skin increases the SOS values.

     The second part is to develop a water immersed system which can measure the bone thickness and eliminate influence of soft tissue. We apply the dual transducers technique described above to the simulation of bone phantom covers with porcine skins. The accuracy in measuring bone phantom thickness is high (normal bone phantom:98.7%; osteoporotic bone phantom: 98.6%). The accuracy in modified SOS is high (normal bone phantom:98.4% ; osteoporotic bone phantom : 99%).

     The third part was in vivo test. Five volunteers were tested in this study. With the results, the thickness of calcaneus can be obtained and it is possible to eliminate the influence of soft tissue on phantom SOS measurement.

     Furthermore, there are the same trends of SOS variation in phantom simulation and in vivo measurement. It concludes that soft tissue increase SOS values and it is possible to eliminate the effect of soft tissue on human bone SOS by using the proposed water immersed system.

    中文摘要…………………………………………………………………….I 英文摘要…………………………………………………………………….Ⅱ 誌謝………………………………………………………………………….Ⅳ 目錄………………………………………………………………………….Ⅴ 表目錄……………………………………………………………………….Ⅷ 圖目錄……………………………………………………………………….Ⅸ 第一章 緒論…………………………………………………………1 第1-1節 骨骼疏鬆症的簡介……………………………………………1 第1-2節 文獻回顧………………………………………………………3 第1-3節 臨床上主要診斷骨質疏鬆症的儀器…………………………5 第1-4節 研究動機………………………………………………………8 第二章 超音波量測骨質的原理………………………………………9 第2-1節 聲波在骨骼中的特性…………………………………………9 第2-2節 超音波量化參數之量測………………………………………9 第2-1-1節 聲波速度(SOS)的計算方法……………………………10 第2-1-2節 波衰減參數(BUA)的計算方法…………………………12 第2-3節 臨床聲波速度(SOS)量測法…………………………………14 第2-3-1節 單探頭超音波參數的SOS量測原理……………………14 第2-3-2節 雙探頭超音波參數的SOS量測原理……………………16 第2-3-3節 堅硬度(STI, Stiffness Index)………………………18 第2-4節 本系統的量測原理……………………………………………18 第2-4-1節 乾式系統量測原理………………………………………18 第2-4-2節 濕式系統量測原理………………………………………19 第三章 自動量測系統的建立與實驗流程………………………………23 第3-1節 系統軟硬體架構的建立………………………………………23 第3-2節 方法與流程……………………………………………………28 第3-2-1節 乾式自動量測系統量測流程……………………………28 第3-2-2節 濕式自動量測系統量測流程……………………………29 第3-3節 多點自動量測系統的建立……………………………………32 第四章 實驗結果與討論………………………………………………35 第4-1節 乾式自動量測系統……………………………………………35 第4-1-1節 壓克力之量測結果………………………………………35 第4-1-2節 假體之量測結果…………………………………………36 第4-1-3節 假體貼附豬皮之量測結果………………………………38 第4-2節 濕式自動量測系統……………………………………………40 第4-3節 人體腳跟骨之量測……………………………………………43 第五章 結論與未來展望…………………………………………………46 第5-1節 結論……………………………………………………………46 第5-2節 未來展望………………………………………………………47 參考文獻…………………………………………………………………48

    [1] 林興中: 骨質疏鬆症之最近進展.台灣醫界 1994;37卷第三期:209-212
    [2] 董氏基金會營養教育資訊網 www.jif.org.tw/educate/fitness
    [3] J. A. Evans and M. B. Tavakoli, "Ultrasonic attenuation and velocity in bone," Phys. Med. Biol, vol. 35, pp. 1387-1396, 1990.
    [4] L. Serpe and J. Y. Rho, "The nonlinear transition period of broadband ultrasound attenuation as bone density veries," J. Biomechanics, vol. 29, pp. 963-966, 1996.
    [5] G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt and R. Recker, “In-vivo Measurement of Osteoporostic Bone Fragility with Apparent velocity of Ultrasound,” IEEE Ultrasonic Symposium, pp.1023-1027, 1989.
    [6] A. M. Schott and D. Hans, “Ultrasound measurements on os calcis: precision and age related changes in a normal female population, “Osteoporosis Int., Vol.3,pp.249-254, 1933.
    [7] R. J. M. Herd and T. Ramalingam, “Measurements of broadband ultrasonic attenuation in the calcaneus in pre and postmenopausal women, ”Osteoporosis Int.,Vol.2,pp.247-251, 1992.
    [8] R. J. M. Herd and G. M. Blake, “Measurements of postmenopasusal bone loss with a new contact ultrasound system,“Calcif. Tissue Int., Vol.53, pp.153-157, 1993.
    [9] C. C. Gluer, C. Y. Wu, and H. K. Genant, “Broadband ultrasonic attenuation signals depend on trabecular orientation: an in-vitro study,” Osteoporosis Int., Vol.3,pp. 185-191, 1993.
    [10] C. M. Langton and G.P. Evans, “Dependence of ultrasonic velocity and attenuation on the material properties of cancellous bone,” Osteoporosis Int., Vol.1,pp. 194,1991.
    [11] A. M. Parfitt and H. Duncan, “Metabolic bone disease affecting the spine. In Rothman RH, Simeone FA, des ”, The spine, vol. 2, Philadelphia: WB Saunders, pp.895-905, 1982.
    [12] C. M. Langton and R. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone, “End Med., Vol.13, pp. 89-91, 1984.
    [13] P.N.T. Wells, Biomedical Ultrasonics (Acsdemic Press, London), 1977.
    [14] S. Han, J. Medige, and I. Ziv, "Combined models of ultrasound velocity and attenuation for predicting trabecular bone strength and mineral density," Clinical Biomechanics, vol. 11, pp. 348-353, 1996.
    [15] P. Hadji, O. Hars, C. Wuster, K. Bock, U. S. Alberts, H. G. Bohnet, G. Emons and K. D. Schulz, “Stiffness index identifies patients with osteoporotic fractures better than ultrasound velocity or attenuation alone,” Maturitas 31, pp.221-226, 1999.
    [16] P. Laugier, B. Fournier, and G. Berger, "Ultrasound parametric imaging og calcaneus: In vivo results with a new device," Calcif Tissue Int., vol. 58, pp. 326-331, 1996.
    [17] M. L. Frost, G. M. Blake, and I, Fogelman, “Does quantitative ultrasound imageing enhance precision and discrimination,”Osteoporosis Int., vol. 11, pp. 425-433,2000.
    [18]呂明璋 “骨組織中波速與波衰減參數的量測”, 成功大學醫學工程研究所碩士論文, 民國九十二年六月.
    [19] P. He, “Measurement of acoustic dispersion using transmitted and reflected pulses,” J. Acoust. Soc. Amer., Vol. 107(2), pp. 801-807, 1999.
    [20] P. He, “Direct measurement of ultrasonic dispersion using broadband transmission technique,” Ultrasonics., Vol. 37, pp. 67-70, 1999.
    [21] K. Wear, “ Measurements of phase velocity and group velocity in human calcaneus,” Ultrasound in Med. & Biol., vol. 26, no. 4, pp641-646, 2000.
    [22] S. Han, J. Medige, and I. Ziv, "Combined models of ultrasound velocity and attenuation for predicting trabecular bone strength and mineral density," Clinical Biomechanics, vol. 11, pp. 348-353, 1996.
    [23] Biomedical ultrasonics. New York: Academic Press, 1977.
    [24] R. Williams, “Determining skin thickness with pulsed ultrasound,” J. Int. Dermatology., Vol 72,pp.17-19,1978.
    [25] P. Fish. Diagnostic Medical Ultrasound. England: John Wiley, 1990.

    下載圖示
    2005-06-28公開
    QR CODE