研究生: |
彭譯德 Peng, Yi-Te |
---|---|
論文名稱: |
電紡絲奈米碳纖維之製備及其鋰離子電池負極材料之應用 Preparation of electrospun carbon nanofibers and their use as anode materials for lithium ion batteries |
指導教授: |
羅介聰
Lo, Chieh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 電紡絲奈米碳纖維 、鋰電池負極材料 |
外文關鍵詞: | Electrospun carbon nanofibers, anode materials of lithium ion batteries |
相關次數: | 點閱:110 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討不同平均直徑的電紡絲聚丙烯腈(polyacrylonitrile, PAN)奈米纖維在800℃熱處理製備奈米碳纖維,並應用於鋰電池負極材料。調整PAN在二甲基甲醯胺(N,N-dimethylformamide, DMF)中的濃度製備平均直徑為65 - 684 nm的奈米碳纖維。SEM圖顯示奈米碳纖維皆具有連續且交錯的結構,X光繞射圖譜與拉曼光譜顯示奈米碳纖維同時具有無序的缺陷結構與規則的奈米石墨結晶。奈米孔徑分析顯示平均直徑為65 nm的樣品具有338 m2/g的最高比表面積,同時也具有最佳的電化學效能,變電流測試顯示在900 mA/g電流密度下具有262 mAh/g的比電容量,循環壽命測試顯示在200 mA/g電流密度下循環100次仍具有407 mAh/g的可逆比電容量,殘留率約90%。將製備的奈米碳纖維進一步在1300℃熱處理,研究顯示奈米碳纖維平均直徑皆變小,但仍保有連續與交錯結構,最小平均直徑達39 nm,X光繞射圖譜與拉曼光譜顯示同時具有缺陷結構與奈米石墨結晶,在1300℃仍難以石墨化。奈米孔徑分析顯示各樣品比表面積皆變小,且有平均孔徑變大與微孔關閉的現象,其中平均直徑為39 nm的樣品具有最大比表面積約130 m2/g。電化學測試顯示在900 mA/g電流密度下具有197 mAh/g的比電容量,循環壽命測試顯示在200 mA/g電流密度下循環100次仍具有239 mAh/g的可逆比電容量,殘留率約112%。本研究亦製備不同比例的聚丙烯腈/聚甲基丙烯酸甲酯(poly(methylmethacrylate), PMMA)電紡絲奈米纖維,經過800℃熱處理後形成多孔洞奈米碳纖維。PAN/PMMA = 5/5為前驅物製備的奈米碳纖維有最高比表面積約為306 m2/g,電化學測試顯示在900 mA/g電流密度下具有256 mAh/g的比電容量,循環壽命測試顯示在200 mA/g電流密度下循環100次仍具有354 mAh/g的可逆比電容量,殘留率約67%。
This work focuses on the preparation of electrospun polyacrylonitrile (PAN) nanofibers with different diameters and their further use as anode materials for lithium ion batteries. By manipulating the concentration of PAN in N,N-dimethylformamide (DMF), the fibers carbonized at 800 oC had a diameter, ranged from 65 - 684 nm. The SEM images of the carbon nanofibers showed continuous and interconnected fiber morphology. The galvanostatic test on the fibers showed a specific capacity of 262 mAh/g under 900 mA/g current density and cycle life test showed a specific capacity of 407 mAh/g after 100 cycles under 200 mA/g current density with 90% specific capacity retention.
[1] A. Formhals et al. U.S. Patent 1, 504.
[2] C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv. Funct. Mater. 16 (2006) 2393-2397.
[3] P.S. Kumar, R. Sahay, V. Aravindan, J. Sundaramurthy, W.C. Ling, V. Thavasi, S.G. Mhaisalkar, S. Madhavi, S. Ramakrishna, J. Phys. D: Appl. Phys. 45 (2012) 265302.
[4] L. Ji, Z. Lin, A.J. Medford, X. Zhang, Chem. Eur. J. 15 (2009) 10718-10722.
[5] L. Ji, Z. Lin, M. Alcoutlabi, O. Toprakci, Y. Yao, G. Xu, S. Li, X. Zhang, RSC Adv. 2 (2012) 192-198.
[6] 黃可龍, 王兆翔, 劉素琴, 五南圖書出版社 (2010).
[7] P. Bruce, B. Scrosati, J. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930-2946.
[8] M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
[9] R. Wagner, N. Preschitschek, S. Passerini, J. Leker, M. Winter, J. Appl. Electrochem. 43 (2013) 481-496.
[10] J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367.
[11] X. Zhang, Y. Li, S.A. Khan, P.S. Fedkiw, J. Electrochem Soc. 151 (2004) A1257-A1263.
[12] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon 38 (2000) 183-197.
[13] S. Flandroisa, B. Simon, Carbon 37 (1999).
[14] A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Chem. Mater. 22 (2010) 2857-2863.
[15] K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S.T. Myung, Y.K. Sun, Adv. Mater. 22 (2010) 3052-3057.
[16] T.F. Yi, L.J. Jiang, J. Shu, C.B. Yue, R.S. Zhu, H.B. Qiao, J. Phys. Chem. Solids 71 (2010) 1236-1242.
[17] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nature Nanotech. 3 (2008) 31-35.
[18] U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources 163 (2007) 1003-1039.
[19] L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Nano Lett. 9 (2009) 3370-3374.
[20] M. Winter, J.O. Besenhard, Electrochim. Acta 45 (1999) 31-50.
[21] G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19 (2007) 2336-2340.
[22] J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun. 11 (2009) 1849-1852.
[23] Y. Yao, PhD thesis University of Wollongong (2003).
[24] Y. Wu, C.V.R. Bobba, S. Ramakrishna, Curr. Org. Chem. 17 (2013) 1411-1423.
[25] F. Su, X.S. Zhao, Y. Wang, J. Zeng, Z. Zhou, J.Y. Lee, J. Phys. Chem. B 109 (2005) 20200-20206.
[26] T.P. Kumar, T. Kumari, A.M. Stephan, J. Indian Inst. Sci. 89 (2009) 393-424.
[27] L. Wang, C.X. Ding, L.C. Zhang, H.W. Xu, D.W. Zhang, T. Cheng, C.H. Chen, J. Power Sources 195 (2010) 5052-5056.
[28] M. Wakihara, O. Yamamoto, Kodansha Ltd., Tokyo (1998).
[29] J.O. Besenhard, M. Winter, Pure & Appl. Chem. 70 (1998) 603-608.
[30] T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. Sacken, J.R. Dahn, J. Electrochem. Soc. 142 (1995) 2581-2590.
[31] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science 270 (1995) 590-593.
[32] R.E. Franklin, Proc. R. Soc. Lond. A 209 (1951) 196-218.
[33] H. Xiang, S. Fang, Y. Jiang, Chin. Sci. Bull. 44 (1999) 385-390.
[34] J. Hu, H. Li, X. Huang, Solid State Ionics 178 (2007) 265-271.
[35] D. Reneker, I. Chun, Nanotech. 7 (1996) 216-223.
[36] C.J. Buchko, L.C. Chen, Y. Shen, D.C. Martin, Polymer 40 (1999) 7397-7407.
[37] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer (2002) 4403-4412.
[38] D. Li, Y. Xia, Nano Lett. 3 (2003) 555-560.
[39] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, Polymer 44 (2003) 4029-4034.
[40] P.K. Baumgarten, J. Colloid Interface Sci. 36 (1971) 71-79.
[41] H. Fong, I. Chun, D.H. Reneker, Polymer 40 (1999) 4585-4592.
[42] K.H. Lee, H.Y. Kim, Y.M. La, D.R. Lee, N.H. Sung, J. Polym. Sci. B Polym. Phys. 40 (2002) 2259-2268.
[43] A. Koski, K. Yim, S. Shivkumar, Mat. Lett. 58 (2004) 493-497.
[44] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff., Adv. Mater. 3 (2001) 70-72.
[45] M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, H. Horibe, Polym. J. 39 (2007) 1060-1064.
[46] C. Kim, Y.I. Jeong, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, M. Endo, J.W. Le, Small 3 (2007) 91-95.
[47] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35 (2002) 8456-8466.
[48] M.L. Clingerman, PhD thesis, Michigan Technological University (2001).
[49] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, Polym. Degrad. Stab. 92 (2007) 1421-1432.
[50] D. Zhu, C. Xu, N. Nakura, M. Mastsuo, Carbon 40 (2002) 363-373.
[51] E. Fitzer, W. Frohs, M. Heine, Carbon 24 (1986) 387-395.
[52] J. Mittal, R.B. Mathur, O.P. Bahl, Carbon 35 (1997) 1196-1197.
[53] F. Rodríguez-Reinoso, M. Molina-Sabio, Carbon 30 (1992) 1111-1118.
[54] P. Raghavan, D.H. Lim, J.H. Ahn, C. Nah, D.C. Sherrington, H.S. Ryu, H.J. Ahn, React. Funct. Polym. 72 (2012) 915-930.
[55] X. Zhang, L. Ji, O. Toprakci, Y. Liang, M. Alcoutlabi, Polymer Reviews (2011) 239-264.
[56] S.K. Nataraja, K.S. Yang, T.M. Aminabhavi, Prog. Polym. Sci. 37 (2012) 487-513.
[57] Y. Yang, F. Simeon, T.A. Hatton, G.C. Rutledge, J. Appl. Polym. Sci. 124 (2012) 3861-3870.
[58] X. Mao, T.A. Hatton, G.C. Rutledge, Curr. Org. Chem. 17 (2013) 1390-1401.
[59] L. Ji, X. Zhang, Nanotech. 20 (2009) 155705.
[60] Y. Yu, L. Gu, C. Zhu, P.A. Aken, J. Maier, J. Am. Chem. Soc. 131 (2009) 15984-15985.
[61] C. Kim, S. Park, J. Cho, D. Lee, T. Park, W. Lee, K. Yang, J. Raman Spectrosc. 35 (2004) 928-933.
[62] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Chem. Mater. 21 (2009) 3136-3142.
[63] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88 (2006) 163106.
[64] A.C. Ferrari, Solid State Commun. 143 (2007) 47-57.
[65] Z. Ryu, J. Zheng, M. Wang, B. Zhang, Carbon 37 (1999) 1257-1264.
[66] C. Li, X. Yin, L. Chen, Q. Li, T. Wang, J. Phys. Chem. C 113 (2009) 13438-13442.
[67] V. Subramanian, H. Zhu, B. Wei, J. Phys. Chem. B 110 (2006) 7178-7183.
[68] C. Wang, A.J. Appleby, F.E. Little, J. Electroanal. Chem. 519 (2002) 9-17.
[69] L.A. Dominey, Elsevier (1994) 114.
[70] B. Lee, S. Son, K. Park, W. Yu, K. Oh, S. Lee., J. Power Sources 199 (2012) 53-60.
[71] L. Ji, Z. Lin, R. Zhou, Q. Shi, O. Toprakci, A.J. Medford, C.R. Millns, X. Zhang, Electrochim. Acta 55 (2010) 1605-1611.
[72] Y. Wu, R. Balakrishna, M.V. Reddy, A.S. Nair, B.V.R. Chowdari, S. Ramakrishna, J. Alloys Compd. 517 (2012) 69-74.
[73] L. Ji, X. Zhang, Electrochem. Commun. 11 (2009) 684-687.
[74] H.S. Choi, J.G. Lee, H.Y. Lee, S.W. Kim, C.R. Park, Electrochim. Acta 56 (2010) 790-796.
[75] T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Nano Lett. 12 (2012) 802-807.
[76] L. Zou, L. Gan, R. Lv, M. Wang, Z.H. Huang, F. Kang, W. Shen, Carbon 49 (2011) 89-95.
[77] B. Wang, J. Cheng, Y. Wu, D. Wang, D. He, J. Mater. Chem. A 1 (2013) 1368-1373.
[78] G. Nadeau, X.Y. Song, M. Masse´, A. Guerfi, G. Brisard, K. Kinoshita, K. Zaghib, J. Power Sources 108 (2002) 86-96.
[79] J.M. Skowron´ski, K. Knofczyn´ski, Y. Yamada, Solid State Ionics 157 (2003) 133-138.
[80] E. Buiel, J.R. Dahn, Electrochim. Acta 45 (1999) 121-130.
[81] E. Buiel, A.E. George, J.R. Dahn, J. Electrochem Soc. 145 (1998) 2252-2257.
[82] Y. Wu, C. Wan, C. Jiang, S. Fang, Y. Jiang, Carbon 37 (1999) 1901-1908.