簡易檢索 / 詳目顯示

研究生: 吳俐潔
Wu, Li-Chieh
論文名稱: 以方向性凝固製備錫鉛合金之不同參數對其凝固結構之影響分析
Experimental Analysis of Control-Parameter Effects on the Solidification Microstructures of Directionally Solidified Lead-Tin Alloys
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 153
中文關鍵詞: 方向性凝固錫鉛合金微觀顯微組織巨觀組織凝固結構
外文關鍵詞: Directional Solidification, Sn-Pb Alloy, Microstructure, Macrostructure and Solidification Microstructure
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝固過程在控制金相微觀結構時,扮演相當重要角色。由於一般鑄造不易控制凝固結構之型態,故本研究以方向性凝固製備錫鉛合金,透過四種不同實驗參數,分別為加熱線圈開啟位置、不同冷激銅盒接觸面、環境溫度及鑄造方式。其中以加熱線圈控制晶粒大小,並藉由冷激銅盒提供一軸向溫度梯度,使晶粒成長為沿著熱通量方向生長之柱狀晶,其可消除橫向晶界,以提高材料使用壽命。此外利用光學顯微鏡觀察鑄件微觀金相組織,並搭配巨觀組織與溫度量測數據,探討上述參數對晶體成長之束縛控制、鑄件底部等軸晶產生區、柱狀晶優選競爭方向區域、晶粒尺寸大小之影響。並將微觀金相組織中所產生之各類晶體形貌分類標示,藉此比較各鑄件之差異。

    Solidification processes play an important role in the morphology control of microstructures. The morphology of solidification microstructure is difficult to master in a casting process. Accordingly, in the thesis, four experimental models of different heating styles, contact surfaces of copper chill, environment temperatures and casting methods are used to study their effects on the directionally solidified lead-tin alloys. The heating style could affect the grain size. The copper chill supply an axial temperature gradient, which could make columnar grains grow along the opposite directional of the heat flow. The columnar growth could decrease the lateral grain boundaries and elevate the material life span. In addition, the microstructure observation through an optical microscope incorporated with the macrostructures and temperature-measured data is used to investigate the influences of the four experimental models on the constraint of dendrite growth, the equiaxed zone at the bottom of the casting, the competition zone of preferred growth directions for the columnar grains and the grain size. Furthermore, based on the classification of the microstructure morphology, the differences among the castings are analyzed.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 第二章 凝固理論模式 11 2-1 凝固過程 11 2-1-1成核階段( Nucleation ) 12 2-1-1-1均質成核(Homogeneous Nucleation) 13 2-1-1-2異質成核(Heterogeneous Nucleation) 14 2-1-2 晶粒成長與侵犯階段(Growth and Impingement) 14 2-1-3晶粒構造形成與晶粒成長型態 15 2-2方向性凝固模式 17 第三章 實驗設備與方法 25 3-1 實驗設備 25 3-1-1 濕砂模鑄造實驗 25 3-1-1-1 混砂造模設備 25 3-1-1-2 鑄件外模 26 3-1-1-3 熔解爐 26 3-1-1-4 熱電偶點焊與氫氧焰氣焊設備 26 3-1-1-5 溫度擷取設備 27 3-1-2 方向性凝固實驗 27 3-1-2-1 方向性凝固載台與冷激端設備 27 3-1-2-2 加熱及溫度控制設備 28 3-1-2-3恆溫循環水槽 29 3-2 實驗模式 29 3-2-1 濕砂模鑄造之實驗模式 30 3-2-2 方向性凝固之實驗模式 31 3-2-1-1 實驗模式Case A 31 3-2-1-2 實驗模式Case B 33 3-2-1-2 實驗模式Case C 33 3-2-1-2 實驗模式Case D 34 3-3 材料分析 34 3-3-1 金相顯微組織觀察 34 3-3-1-1 金相觀察之實驗設備 35 3-3-1-2金相觀察之實驗步驟與方法 36 3-3-2 實驗數據整理與計算 38 第四章 結果與討論 57 4-1巨觀金相組織觀察 57 4-2 鑄件之暫態溫度量測 60 4-2-1 鑄件之冷卻曲線分析 61 4-2-2 溫度梯度之分析觀察 64 4-2-3 鑄件各位置離開加熱區時間和凝固時間之比較 65 4-3 鑄件之微觀金相組織觀察 66 4-3-1 縱切面之微觀金相組織分類 67 4-3-2 縱切面之微觀金相區域分類 70 4-3-3 晶粒數目計算分析 72 第五章 結論 139 5-1 巨觀與微觀金相組織觀察 139 5-2鑄件溫度量測 140 參考文獻 142 附錄A 晶粒數之取樣方式 144 附錄B 微觀組織金相全貌圖 145

    [1] W. F. Smith and J. Hashemi, Foundations of materials science and engineering: Mcgraw-Hill Publishing, 2006.
    [2] 林明宗, 鑄造學: 長諾資訊圖書公司, 1993.
    [3] 張晉昌, 鑄造學: 科友圖書股份有限公司, 1998.
    [4] 李魁盛, "鑄造工藝設計基礎," ed: 機械工業出版社, 1981.
    [5] 陸文華, 鑄鐵及其熔煉: 機械工業出版社, 1981.
    [6] M. Rettenmayer and H. E. Exner, Directional Solidification Materials Science and Technology, 2001.
    [7] 何廣福, "方向性凝固之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-130, 2005.
    [8] 趙國傑, "凝固參數對於方向性成長之結構參數影響分析," 成功大學工程科學系碩博士班學位論文, pp. 1-179, 2007.
    [9] C. M. Klaren , J. D. Verhoeven and R. Trivedi, "Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au Alloys," Metallurgical Transcatons 11A, vol. 11, pp. 1853-1861, 1980.
    [10] D. McCarthy and J. Hunt, "Measurement of cell and primary dendrite arm spacings in directional solidified aluminum alloys," ACTA Metallurgica, vol. 29, pp. 1851-1863, 1981.
    [11] 日本鑄造技術講座編輯委員會, 鑄造技術的基礎: 復漢出版社, 1977.
    [12] O. L. Rocha, C. A. Siqueira, and A. Garcia, "Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys," Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
    [13] C. A. Siqueira, N. Cheung, and A. Garcia, "The columnar to equiaxed transition during solidification of Sn–Pb alloys," Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
    [14] J. E. Spinelli , I. L. Ferreira and A. Garcia,, "Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys," Journal of Alloys and Compounds 384, vol. 384, pp. 217-226, 2004.
    [15] E. Cadirli and M. Gündüz, "The directional solidification of Pb-Sn alloys," Journal of materials science, vol. 35, pp. 3837-3848, 2000.
    [16] Fernando sa , Otavio Lima Rocha, Claudio Alves Siqueira and Amauri Garcia, "The Effect of Solidification Variables on Teriary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys," Materials Science Engineering A, vol. 373, pp. 131-138, 2004.
    [17] 林盈佐, "凝固顯微組織與模式分析," 成功大學工程科學系碩博士班學位論文, pp. 1-68, 1998.
    [18] W. Kurz and D. J. Fisher, "Fundamentals of solidification," Trans Tech Publications Ltd, Trans Tech House, 4711, Aedermannsdorf, Switzerland, 1986. 244, 1986.
    [19] A. Reed-Hill, 物理冶金: 全華科技圖書, 1995.
    [20] D. R. Askeland and P. P. Phulé, Science & Engineering of Materials: Cengage Learning, 2006.
    [21] 韋孟育, 材料實驗方法-金相分析技術: 金華科技圖書股份有限公司, 1990.
    [22] Standard Methods for Estimationg the Average Grain Size of Metals vol. 03 ASTM USA: Annual Books of ASTM Standards, 1984.
    [23] 陳怡君, "以方向性凝固製備二元合金之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-233, 2009.
    [24] 趙上億, "錫鉛合金方向性凝固製程之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-95, 2013.

    下載圖示 校內:2023-12-09公開
    校外:2023-12-09公開
    QR CODE