| 研究生: |
廖文濱 Liao, Wen-Pin |
|---|---|
| 論文名稱: |
金屬氧化物奈米網絡與高分子混摻太陽能電池之特性與載子動力學之研究 Photovoltaic Properties and Photocarrier Dynamics of Nanoarchitectural Metal Oxide−Polymer Hybrid Solar Cells |
| 指導教授: |
吳季珍
Wu, Jih−Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 金屬氧化物奈米結構 、即時合成 、混摻太陽能電池 、Fano共振 、載子動力學 、載子捕獲效率 |
| 外文關鍵詞: | metal oxide nanostructure, in situ generation, hybrid solar cell, Fano resonance, carrier dynamics, charge collection efficiency |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題是利用不同金屬氧化物奈米結構作為反式高分子混摻太陽能電池中的電子接受材料與傳輸通道。其中,電池內的載子動力學(如:載子的分離、再結合與傳輸特性)則分別利用時間解析螢光光譜(time-resolved photoluminescence, TRPL)、阻抗光譜(impedance spectroscopy, IS)與光強度調致光電流光譜(intensity-modulated photocurrent spectroscopy, IMPS)等分析方法來鑑定與了解載子於元件中的運作特性。
本研究的第一部份中,我們以TiO2奈米結構陣列與共軛高分子P3HT建構混摻太陽能電池。藉由染料分子(如:Z907與D149)修飾混摻太陽能電池中的TiO2/P3HT之界面,能夠有效地提升整體電池效率。此外,我們整合循環伏安法(cyclic voltammetry, CV)與Kelvin原子力顯微鏡(Kelvin probe force microscope, KPM)兩項實驗,成功地建立平衡狀態下的元件能階圖。由平衡狀態的元件能階圖顯示,作為界面修飾的染料分子在元件中,不僅能夠符合在TiO2/P3HT界面中,作為分別傳遞電子與電洞成為載子傳輸橋梁,還能夠因染料分子兩端的親疏水端,成功降低有機/無機界面的化學不匹配性,並提升高分子的排列規則性。除此之外,本研究導入三維擬單晶的TiO2樹枝狀奈米結構陣列於混摻太陽能電池當中,以藉由三維TiO2結構,有效地增加激子(exciton)解離面積。因此,由染料分子D149所修飾之TiO2奈米樹枝狀結構陣列/P3HT混摻太陽能電池可得到電池效率3.12%。
在第二部份,本研究整合規則奈米結構陣列與塊材異質接面(bulk heterojunction, BHJ)兩項結構優點於同一個混摻太陽能電池當中。此元件是利用旋轉塗佈(spin-coating)內含ZnO反應前驅物與高分子P3HT的主動層溶液至TiO2奈米柱陣列上。在塗佈期間,ZnO奈米網絡則能夠成功地即時(in situ)合成於高分子P3HT當中,並滲入至TiO2奈米柱的間隙當中,成功建構混摻太陽能電池。TiO2奈米柱陣列在此元件中,不僅作為從導電基板所延伸之電子傳輸與接收通道,且作為有效程載ZnO/P3HT混摻膜之骨架。由於此即時形成的ZnO/P3HT混摻膜擁有良好的載子分離效率,藉由增加TiO2奈米柱陣列的厚度來提升此ZnO/P3HT混摻膜厚度,能夠有效地增加光捕獲效率,使此電池在無任何界面修飾的情況下電池效率增加至2.46%。
最後一部份,本研究導入核殼結構的金與二氧化矽(Au@silica)奈米顆粒至金屬氧化物奈米網絡/P3HT的混摻膜當中。其中,由時域有限差分法(finite difference time domain, FDTD)模擬結果顯示,當Au@silica奈米顆粒在照光情況下,會產生不對稱的四極(quadrupole)之Fano共振於奈米顆粒表面。此奈米顆粒表面的Fano共振所誘發電場能夠有效地提升載子分離效率,本研究則以TRPL實驗中,額外掛載綠光雷射,能夠直接地證明此結果。此外,添加Au@silica奈米顆粒至混摻膜中會額外提升P3HT的結晶度,這也是提高電池電流的原因之一。相對於未添加Au@silica奈米顆粒的混摻太陽能電池,有導入奈米顆粒的電池之短路電流能夠提升30%。
In this work, we demonstrated metal oxide nanoarchitectures as electron acceptors and transport channels in inverted-type poly(3-hexylthiophene) (P3HT)-based hybrid solar cells. Photocarrier dynamics (charge separation, recombination, and transport properties) of hybrid solar cells are investigated and characterized by time-resolved photoluminescence (TRPL), impedance spectroscopy (IS), and intensity-modulated photocurrent spectroscopy (IMPS) measurements.
In the first part, we demonstrated ordered hybrid polymer solar cells fabricated by using rutile TiO2 nanoarchitecture (nanorod (NR) and nanodendrite (ND)) arrays and P3HT. Interfacial modification with dye molecules in this work can significantly improve the cell performance of ordered TiO2 nanorod (NR)–P3HT hybrid solar cells. Equilibrium energy band diagrams of dye-modified TiO2 NR−P3HT hybrid solar cells are established by integrating cyclic voltammetry (CV) and Kelvin probe force microscope (KPM) measurements. The dye molecules, Z907 and D149, in the hybrid solar cells not only provide an appropriate band alignment between TiO2/P3HT interfaces, but also improve the chemical compatibility of interface morphology of the hybrids. Besides, three-dimensional TiO2 nanodendrite (ND) arrays are employed to further increase the interfacial area in hybrid solar cells. A power conversion efficiency (PCE) of 3.12% is achieved in the D149-modified TiO2 ND array/P3HT hybrid solar cell.
Second, we demonstrated a nanoarchitectural hybrid solar cell, integrating an ordered TiO2 NR array and a bulk heterojunction (BHJ) of ZnO nanoparticle (NP)/P3HT into cells. The cell was fabricated by infiltrating a solution containing diethylzinc (DEZ) and P3HT into the interstices of TiO2 NRs. An inorganic network composed of tiny ZnO nanocrystals is in situ generated in the active layer within the interstices of TiO2 NRs. The TiO2 NR arrays in hybrid solar cell not only serve as an electron transporter/collector extended from the FTO electrode to sustain the efficient electron collection, but also serve as a scaffold to hold the sufficient amount of ZnO/P3HT hybrid. The in-situ-generated ZnO NP/P3HT hybrid with superior charge separation efficiency can be thickened in the presence of a TiO2 NR array for increasing the light-harvesting efficiency. An efficiency of 2.46% is therefore attained in the TiO2 NR−ZnO/P3HT hybrid solar cell without interfacial modification.
At last, we incorporated a gold−silica core−shell (Au@silica) nanoparticle (NP) into the metal oxide nanoarchitecture/P3HT hybrid. Finite difference time domain (FDTD) simulation shows the existence of an asymmetric quadrupole of Fano resonance on the Au@silica-NP surface. The charge separation enhancement in the Au@silica-NP-incorporated hybrid contributed to the Fano resonance induced electric field is directly evidenced by TRPL measurements with an additional green light illumination. The increase of the degree of P3HT order in the hybrid by adding Au@silica NPs into the hybrid active layer may also enhance current density in the cell. Compared to the metal oxide nanoarchitecture/P3HT hybrid solar cell, a 30% enhancement of short-circuit current density (Jsc) is attained in the P3HT-based nanoarchitectural Fano solar cell (NAFSC) with Au@silica NPs.
[1] M. Grätzel, "Photoelectrochemical Cells", Nature, 414, 338-344 (2001).
[2] A. Hagfeldt and M. Grätzel, "Molecular Photovoltaics", Accounts Chem. Res., 33, 269-277 (2000).
[3] M. Grätzel, "Dye-Sensitized Solar Cells", J. Photochem. Photobiol. C-Photochem. Rev., 4, 145-153 (2003).
[4] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys., 25, 676-677 (1954).
[5] S. Gunes, H. Neugebauer and N. S. Sariciftci, "Conjugated Polymer-Based Organic Solar Cells", Chem. Rev., 107, 1324-1338 (2007).
[6] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar Cell Efficiency Tables (Version 39)", Prog. Photovolt: Res. Appl., 20, 12-20 (2012).
[7] S. Lizin, S. Van Passel, E. De Schepper, W. Maes, L. Lutsen, J. Manca and D. Vanderzande, "Life Cycle Analyses of Organic Photovoltaics: A Review", Energy Environ. Sci., 6, 3136-3149 (2013).
[8] B. O'Regan and M. Gratzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films", Nature, 353, 737-740 (1991).
[9] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-Sensitized Solar Cells", Chem. Rev., 110, 6595-6663 (2010).
[10] J.-J. Wu, W.-P. Liao and M. Yoshimura, "Soft Processing of Hierarchical Oxide Nanostructures for Dye-Sensitized Solar Cell Applications", Nano Energy, 2, 1354-1372 (2013).
[11] M. Yu, Y. Z. Long, B. Sun and Z. Fan, "Recent Advances in Solar Cells Based on One-Dimensional Nanostructure Arrays", Nanoscale, 4, 2783-2796 (2012).
[12] S. E. Koops, B. C. O’Regan, P. R. F. Barnes and J. R. Durrant, "Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells", J. Am. Chem. Soc., 131, 4808-4818 (2009).
[13] http://www.nrel.gov/ncpv/.
[14] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science, 334, 629-634 (2011).
[15] F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrom and M. S. Pedersen, "Manufacture, Integration and Demonstration of Polymer Solar Cells in a Lamp for the "Lighting Africa" Initiative", Energy Environ. Sci., 3, 512-525 (2010).
[16] S. R. Forrest, "The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic", Nature, 428, 911-918 (2004).
[17] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, "Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%", Nat. Photon., 3, 297-302 (2009).
[18] E. Stratakis and E. Kymakis, "Nanoparticle-Based Plasmonic Organic Photovoltaic Devices", Mater. Today, 16, 133-146 (2013).
[19] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M. D. McGehee, "Polymer-Based Solar Cells", Mater. Today, 10, 28-33 (2007).
[20] S. Woo, W. Hyun Kim, H. Kim, Y. Yi, H.-K. Lyu and Y. Kim, "8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers", Adv. Energy Mater., 4, 1301692 (2014).
[21] B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng and Y. Chen, "Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%", J. Am. Chem. Soc., 136, 15529-15532 (2014).
[22] T. Ameri, G. Dennler, C. Lungenschmied and C. J. Brabec, "Organic Tandem Solar Cells: A Review", Energy Environ. Sci., 2, 347-363 (2009).
[23] S. Sista, Z. Hong, L.-M. Chen and Y. Yang, "Tandem Polymer Photovoltaic Cells-Current Status, Challenges and Future Outlook", Energy Environ. Sci., 4, 1606-1620 (2011).
[24] J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-r. Tan, X. W. Zhang, Z. Hong and Y. Yang, "Plasmonic Polymer Tandem Solar Cell", ACS Nano, 5, 6210-6217 (2011).
[25] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, "A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency", Nat. Commun., 4, 1446 (2013).
[26] C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong and Y. Yang, "An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%", Adv. Mater., 26, 5670-5677 (2014).
[27] M. A. Green, A. Ho-Baillie and H. J. Snaith, "The Emergence of Perovskite Solar Cells", Nat. Photon., 8, 506-514 (2014).
[28] S. Kazim, M. K. Nazeeruddin, M. Grätzel and S. Ahmad, "Perovskite as Light Harvester: A Game Changer in Photovoltaics", Angew. Chem. Int. Ed., 53, 2812-2824 (2014).
[29] P. Gao, M. Gratzel and M. K. Nazeeruddin, "Organohalide Lead Perovskites for Photovoltaic Applications", Energy Environ. Sci., 7, 2448-2463 (2014).
[30] P. P. Boix, K. Nonomura, N. Mathews and S. G. Mhaisalkar, "Current Progress and Future Perspectives for Organic/Inorganic Perovskite Solar Cells", Mater. Today, 17, 16-23 (2014).
[31] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel and S. I. Seok, "Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors", Nat. Photon., 7, 486-491 (2013).
[32] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells", Nano Lett., 13, 1764-1769 (2013).
[33] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber", Science, 342, 341-344 (2013).
[34] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science, 338, 643-647 (2012).
[35] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Sci. Rep., 2, 591 (2012).
[36] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells", J. Am. Chem. Soc., 131, 6050-6051 (2009).
[37] J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, "Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells", Energy Environ. Sci., 6, 1739-1743 (2013).
[38] M. Liu, M. B. Johnston and H. J. Snaith, "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition", Nature, 501, 395-398 (2013).
[39] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, "Sub-150 ºC Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency", Energy Environ. Sci., 7, 1142-1147 (2014).
[40] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, "Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells", Nat. Mater., 13, 897-903 (2014).
[41] B. R. Saunders and M. L. Turner, "Nanoparticle–Polymer Photovoltaic Cells", Adv. Colloid Interface Sci., 138, 1-23 (2008).
[42] J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann and L. Schmidt-Mende, "Nanostructured Organic and Hybrid Solar Cells", Adv. Mater., 23, 1810-1828 (2011).
[43] Y.-H. Sung, W.-P. Liao, D.-W. Chen, C.-T. Wu, G.-J. Chang and J.-J. Wu, "Room-Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Efficient Hybrid Polymer Solar Cells", Adv. Funct. Mater., 22, 3808-3814 (2012).
[44] Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu and C.-W. Chen, "Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells", J. Am. Chem. Soc., 131, 3644-3649 (2009).
[45] R. Zhu, C.-Y. Jiang, B. Liu and S. Ramakrishna, "Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye", Adv. Mater., 21, 994-1000 (2009).
[46] S.-J. Moon, E. Baranoff, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M. Gratzel and K. Sivula, "Enhanced Light Harvesting in Mesoporous TiO2/P3HT Hybrid Solar Cells Using a Porphyrin Dye", Chem. Commun., 47, 8244-8246 (2011).
[47] G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham and C. A. Grimes, "Visible to near-Infrared Light Harvesting in TiO2 Nanotube Array−P3ht Based Heterojunction Solar Cells", Nano Lett., 9, 4250-4257 (2009).
[48] W. Zhang, R. Zhu, F. Li, Q. Wang and B. Liu, "High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter", J. Phys. Chem. C, 115, 7038-7043 (2011).
[49] B. Liu and E. S. Aydil, "Growth of Oriented Single-Crystalline Rutile Tio2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells", J. Am. Chem. Soc., 131, 3985-3990 (2009).
[50] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications", Nano Lett., 8, 3781-3786 (2008).
[51] W.-P. Liao and J.-J. Wu, "Wet Chemical Route to Hierarchical Tio2 Nanodendrite/Nanoparticle Composite Anodes for Dye-Sensitized Solar Cells", J. Mater. Chem., 21, 9255-9262 (2011).
[52] S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt and R. A. J. Janssen, "The Effect of Three-Dimensional Morphology on the Efficiency of Hybrid Polymer Solar Cells", Nat. Mater., 8, 818-824 (2009).
[53] Q. Gan, F. J. Bartoli and Z. H. Kafafi, "Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier", Adv. Mater., 25, 2385-2396 (2013).
[54] J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang and C.-S. Hsu, "Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells", ACS Nano, 5, 959-967 (2011).
[55] X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha and A. H. P. Ho, "Efficiency Enhancement of Organic Solar Cells by Using Shape-Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles", Adv. Funct. Mater., 23, 2728-2735 (2013).
[56] L. Lu, Z. Luo, T. Xu and L. Yu, "Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells", Nano Lett., 13, 59-64 (2012).
[57] B. Chen, W. Zhang, X. Zhou, X. Huang, X. Zhao, H. Wang, M. Liu, Y. Lu and S. Yang, "Surface Plasmon Enhancement of Polymer Solar Cells by Penetrating Au/SiO2 Core/Shell Nanoparticles into All Organic Layers", Nano Energy, 2, 906-915 (2013).
[58] V. Janković, Y. Yang, J. You, L. Dou, Y. Liu, P. Cheung and J. P. Chang, "Active Layer-Incorporated, Spectrally Tuned Au/SiO2 Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics", ACS Nano, 7, 3815-3822 (2013).
[59] X. Xu, A. K. K. Kyaw, B. Peng, D. Zhao, T. K. S. Wong, Q. Xiong, X. W. Sun and A. J. Heeger, "A Plasmonically Enhanced Polymer Solar Cell with Gold–Silica Core–Shell Nanorods", Org. Electron., 14, 2360-2368 (2013).
[60] W. Zhu, N. Minami, S. Kazaoui and Y. Kim, "π-Chromophore-Functionalized Swnts by Covalent Bonding: Substantial Change in the Optical Spectra Proving Strong Electronic Interaction", J. Mater. Chem., 14, 1924-1926 (2004).
[61] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene", Science, 258, 1474-1476 (1992).
[62] F. Wudl, "The Chemical Properties of Buckminsterfullerene (C60) and the Birth and Infancy of Fulleroids", Accounts Chem. Res., 25, 157-161 (1992).
[63] A. J. Ferguson, N. Kopidakis, S. E. Shaheen and G. Rumbles, "Quenching of Excitons by Holes in Poly(3-hexylthiophene) Films", J. Phys. Chem. C, 112, 9865-9871 (2008).
[64] F. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson and O. Inganäs, "Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells", Adv. Mater., 18, 2169-2173 (2006).
[65] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing", Science, 317, 222-225 (2007).
[66] J. Roncali, "Synthetic Principles for Bandgap Control in Linear Π-Conjugated Systems", Chem. Rev., 97, 173-206 (1997).
[67] J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li and Y. Yang, "Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b′]dithiophene", Macromolecules, 41, 6012-6018 (2008).
[68] T. Xu and Q. Qiao, "Conjugated Polymer-Inorganic Semiconductor Hybrid Solar Cells", Energy Environ. Sci., 4, 2700-2720 (2011).
[69] H. Hoppe and N. S. Sariciftci, "Organic Solar Cells: An Overview", J. Mater. Res., 19, 1924-1945 (2004).
[70] G. Li, V. Shrotriya, Y. Yao, J. Huang and Y. Yang, "Manipulating Regioregular Poly(3-Hexylthiophene) : [6,6]-Phenyl-C61-butyric Acid Methyl Ester Blends-Route Towards High Efficiency Polymer Solar Cells", J. Mater. Chem., 17, 3126-3140 (2007).
[71] S. C. J. Meskers, J. Hübner, M. Oestreich and H. Bässler, "Dispersive Relaxation Dynamics of Photoexcitations in a Polyfluorene Film Involving Energy Transfer: Experiment and Monte Carlo Simulations", J. Phys. Chem. B, 105, 9139-9149 (2001).
[72] M. Aryal, K. Trivedi and W. Hu, "Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography", ACS Nano, 3, 3085-3090 (2009).
[73] I. D. Parker, "Carrier Tunneling and Device Characteristics in Polymer Light‐Emitting Diodes", J. Appl. Phys., 75, 1656-1666 (1994).
[74] J. C. BERNÈDE, "Organic Photovoltaic Cells: History, Principle and Techniques", J. Chil. Chem. Soc., 53, 1549-1564 (2008).
[75] P. Schilinsky, C. Waldauf, J. Hauch and C. J. Brabec, "Simulation of Light Intensity Dependent Current Characteristics of Polymer Solar Cells", J. Appl. Phys., 95, 2816-2819 (2004).
[76] C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch and C. J. Brabec, "Physics of Organic Bulk Heterojunction Devices for Photovoltaic Applications", J. Appl. Phys., 99, 104503 (2006).
[77] B. Kippelen and J.-L. Bredas, "Organic Photovoltaics", Energy Environ. Sci., 2, 251-261 (2009).
[78] W. J. Potscavage, A. Sharma and B. Kippelen, "Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage", Accounts Chem. Res., 42, 1758-1767 (2009).
[79] C. W. Tang, "Two‐Layer Organic Photovoltaic Cell", Appl. Phys. Lett., 48, 183-185 (1986).
[80] S. Tepavcevic, S. B. Darling, N. M. Dimitrijevic, T. Rajh and S. J. Sibener, "Improved Hybrid Solar Cells via In Situ UV Polymerization", Small, 5, 1776-1783 (2009).
[81] Y. Zhang, C. Wang, L. Rothberg and M.-K. Ng, "Surface-Initiated Growth of Conjugated Polymers for Functionalization of Electronically Active Nanoporous Networks: Synthesis, Structure and Optical Properties", J. Mater. Chem., 16, 3721-3725 (2006).
[82] Y. Hao, J. Pei, Y. Wei, Y. Cao, S. Jiao, F. Zhu, J. Li and D. Xu, "Efficient Semiconductor-Sensitized Solar Cells Based on Poly(3-hexylthiophene)@ Cdse@ZnO Core−Shell Nanorod Arrays", J. Phys. Chem. C, 114, 8622-8625 (2010).
[83] C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang and Y. Li, "Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods", Angew. Chem. Int. Ed., 50, 9386-9390 (2011).
[84] C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang and C.-S. Hsu, "Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer", J. Am. Chem. Soc., 132, 4887-4893 (2010).
[85] M. Jørgensen, K. Norrman and F. C. Krebs, "Stability/Degradation of Polymer Solar Cells", Sol. Energy Mater. Sol. Cells, 92, 686-714 (2008).
[86] Y. Şahin, S. Alem, R. de Bettignies and J.-M. Nunzi, "Development of Air Stable Polymer Solar Cells Using an Inverted Gold on Top Anode Structure", Thin Solid Films, 476, 340-343 (2005).
[87] J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse and L. Schmidt-Mende, "Spray-Deposited PEDOT:PSS for Inverted Organic Solar Cells", Sol. Energy Mater. Sol. Cells, 94, 2371-2374 (2010).
[88] K.-H. Kim, H. Kang, H. J. Kim, P. S. Kim, S. C. Yoon and B. J. Kim, "Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells", Chem. Mat., 24, 2373-2381 (2012).
[89] E. Arici, N. S. Sariciftci and D. Meissner, "Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices", Adv. Funct. Mater., 13, 165-171 (2003).
[90] H. Weller, "Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region between Solid State and Molecules", Angew. Chem.-Int. Edit., 32, 41-53 (1993).
[91] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, "Hybrid Nanorod-Polymer Solar Cells", Science, 295, 2425-2427 (2002).
[92] W. U. Huynh, X. Peng and A. P. Alivisatos, "CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices", Adv. Mater., 11, 923-927 (1999).
[93] S.-S. Li, C.-P. Chang, C.-C. Lin, Y.-Y. Lin, C.-H. Chang, J.-R. Yang, M.-W. Chu and C.-W. Chen, "Interplay of Three-Dimensional Morphologies and Photocarrier Dynamics of Polymer/TiO2 Bulk Heterojunction Solar Cells", J. Am. Chem. Soc., 133, 11614-11620 (2011).
[94] A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots", Science, 271, 933-937 (1996).
[95] S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, "Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics", Nat Mater, 4, 138-142 (2005).
[96] F. C. Krebs and K. Norrman, "Analysis of the Failure Mechanism for a Stable Organic Photovoltaic During 10,000 h of Testing", Prog. Photovolt: Res. Appl., 15, 697-712 (2007).
[97] A. Göpferich, "Mechanisms of Polymer Degradation and Erosion", Biomaterials, 17, 103-114 (1996).
[98] K. M. Coakley and M. D. McGehee, "Photovoltaic Cells Made from Conjugated Polymers Infiltrated into Mesoporous Titania", Appl. Phys. Lett., 83, 3380-3382 (2003).
[99] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H.-J. Kim, S. I. Seok, M. K. Nazeeruddin and M. Gratzel, "High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells", Nano Lett., 10, 2609-2612 (2010).
[100] Y.-J. Lee, M. T. Lloyd, D. C. Olson, R. K. Grubbs, P. Lu, R. J. Davis, J. A. Voigt and J. W. P. Hsu, "Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices", J. Phys. Chem. C, 113, 15778-15782 (2009).
[101] L. Baeten, B. Conings, H.-G. Boyen, J. D'Haen, A. Hardy, M. D'Olieslaeger, J. V. Manca and M. K. Van Bael, "Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays", Adv. Mater., 23, 2802-2805 (2011).
[102] K. Shankar, G. K. Mor, M. Paulose, O. K. Varghese and C. A. Grimes, "Effect of Device Geometry on the Performance of TiO2 Nanotube Array-Organic Semiconductor Double Heterojunction Solar Cells", J. Non-Cryst. Solids, 354, 2767-2771 (2008).
[103] C. Goh, S. R. Scully and M. D. McGehee, "Effects of Molecular Interface Modification in Hybrid Organic-Inorganic Photovoltaic Cells", J. Appl. Phys., 101, 114503 (2007).
[104] D.-W. Chen, T.-C. Wang, W.-P. Liao and J.-J. Wu, "Synergistic Effect of Dual Interfacial Modifications with Room-Temperature-Grown Epitaxial ZnO and Adsorbed Indoline Dye for ZnO Nanorod Array/P3HT Hybrid Solar Cell", ACS Appl. Mater. Interfaces, 5, 8359-8365 (2013).
[105] E. T. Yu and J. van de Lagemaat, "Photon Management for Photovoltaics", MRS Bull., 36, 424-428 (2011).
[106] H. A. Atwater and A. Polman, "Plasmonics for Improved Photovoltaic Devices", Nat Mater, 9, 205-213 (2010).
[107] W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface Plasmon Subwavelength Optics", Nature, 424, 824-830 (2003).
[108] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment", J. Phys. Chem. B, 107, 668-677 (2003).
[109] D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie and S. He, "Optical and Electrical Properties of Efficiency Enhanced Polymer Solar Cells with Au Nanoparticles in a PEDOT-PSS Layer", J. Mater. Chem., 21, 16349-16356 (2011).
[110] M. Stavytska-Barba, M. Salvador, A. Kulkarni, D. S. Ginger and A. M. Kelley, "Plasmonic Enhancement of Raman Scattering from the Organic Solar Cell Material P3HT/PCBM by Triangular Silver Nanoprisms", J. Phys. Chem. C, 115, 20788-20794 (2011).
[111] F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo and M. H. Huang, "Plasmonic-Enhanced Polymer Photovoltaic Devices Incorporating Solution-Processable Metal Nanoparticles", Appl. Phys. Lett., 95, 013305 (2009).
[112] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You and Y. Yang, "Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells", Adv. Mater., 24, 3046-3052 (2012).
[113] K. Kim and D. L. Carroll, "Roles of Au and Ag Nanoparticles in Efficiency Enhancement of Poly(3-Octylthiophene)/C60 Bulk Heterojunction Photovoltaic Devices", Appl. Phys. Lett., 87, 203113 (2005).
[114] H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang and B. Yang, "Fano Resonance in (Gold Core)−(Dielectric Shell) Nanostructures without Symmetry Breaking", Small, 8, 1503-1509 (2012).
[115] H. Shen, P. Bienstman and B. Maes, "Plasmonic Absorption Enhancement in Organic Solar Cells with Thin Active Layers", J. Appl. Phys., 106, 073109 (2009).
[116] U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts", Phys. Rev., 124, 1866-1878 (1961).
[117] G. Piao, R. A. Lewis and P. Fisher, "Fano Resonances in the Absorption Spectrum of Singly Ionised Zinc in Germanium", Solid State Commun., 75, 835-838 (1990).
[118] Y. Xu, Y. Li, R. K. Lee and A. Yariv, "Scattering-Theory Analysis of Waveguide-Resonator Coupling", Phys. Rev. E, 62, 7389-7404 (2000).
[119] M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton and K. Karrai, "The Nonlinear Fano Effect", Nature, 451, 311-314 (2008).
[120] C. L. Garrido Alzar, M. A. G. Martinez and P. Nussenzveig, "Classical Analog of Electromagnetically Induced Transparency", Am. J. Phys., 70, 37-41 (2002).
[121] F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas and P. Nordlander, "Symmetry Breaking in Plasmonic Nanocavities: Subradiant Lspr Sensing and a Tunable Fano Resonance", Nano Lett., 8, 3983-3988 (2008).
[122] F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe and S. A. Maier, "Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing", ACS Nano, 3, 643-652 (2009).
[123] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen and C. T. Chong, "The Fano Resonance in Plasmonic Nanostructures and Metamaterials", Nat Mater, 9, 707-715 (2010).
[124] W.-P. Liao, S.-C. Hsu, W.-H. Lin and J.-J. Wu, "Hierarchical TiO2 Nanostructured Array/P3HT Hybrid Solar Cells with Interfacial Modification", J. Phys. Chem. C, 116, 15938-15945 (2012).
[125] W.-P. Liao, Y.-H. Su, Y.-K. Huang, C.-S. Yeh, L.-W. Huang and J.-J. Wu, "P3HT-Based Nanoarchitectural Fano Solar Cells", ACS Appl. Mater. Interfaces, 6, 17993-18000 (2014).
[126] Y. Kobayashi, H. Inose, T. Nakagawa, K. Gonda, M. Takeda, N. Ohuchi and A. Kasuya, "Control of Shell Thickness in Silica-Coating of Au Nanoparticles and Their X-Ray Imaging Properties", J. Colloid Interface Sci., 358, 329-333 (2011).
[127] M. S. Kim, M. G. Kang, L. J. Guo and J. Kim, "Choice of Electrode Geometry for Accurate Measurement of Organic Photovoltaic Cell Performance", Appl. Phys. Lett., 92, 133301 (2008).
[128] W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson and J.-S. Kim, "The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films", J. Am. Chem. Soc., 133, 9834-9843 (2011).
[129] C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jäger-Waldau and M. C. Lux-Steiner, "High-Sensitivity Quantitative Kelvin Probe Microscopy by Noncontact Ultra-High-Vacuum Atomic Force Microscopy", Appl. Phys. Lett., 75, 286-288 (1999).
[130] R. J. Davis, M. T. Lloyd, S. R. Ferreira, M. J. Bruzek, S. E. Watkins, L. Lindell, P. Sehati, M. Fahlman, J. E. Anthony and J. W. P. Hsu, "Determination of Energy Level Alignment at Interfaces of Hybrid and Organic Solar Cells under Ambient Environment", J. Mater. Chem., 21, 1721-1729 (2011).
[131] D. Jarzab, K. Szendrei, M. Yarema, S. Pichler, W. Heiss and M. A. Loi, "Charge-Separation Dynamics in Inorganic–Organic Ternary Blends for Efficient Infrared Photodiodes", Adv. Funct. Mater., 21, 1988-1992 (2011).
[132] W. C. Tsoi, S. J. Spencer, L. Yang, A. M. Ballantyne, P. G. Nicholson, A. Turnbull, A. G. Shard, C. E. Murphy, D. D. C. Bradley, J. Nelson and J.-S. Kim, "Effect of Crystallization on the Electronic Energy Levels and Thin Film Morphology of P3HT:PCBM Blends", Macromolecules, 44, 2944-2952 (2011).
[133] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin and M. Grätzel, "Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-Ometad as Hole Conductor", J. Am. Chem. Soc., 131, 558-562 (2008).
[134] W. Zhang, R. Zhu, L. Ke, X. Liu, B. Liu and S. Ramakrishna, "Anatase Mesoporous TiO2 Nanofibers with High Surface Area for Solid-State Dye-Sensitized Solar Cells", Small, 6, 2176-2182 (2010).
[135] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, "Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine", J. Phys. Chem. C, 113, 6290-6297 (2009).
[136] T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, "High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes", J. Am. Chem. Soc., 126, 12218-12219 (2004).
[137] D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, "Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers", Angew. Chem. Int. Ed., 47, 1923-1927 (2008).
[138] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells", Inorg. Chem., 44, 6841-6851 (2005).
[139] M. Brinkmann, "Structure and Morphology Control in Thin Films of Regioregular Poly(3-hexylthiophene)", J. Polym. Sci. Pt. B-Polym. Phys., 49, 1218-1233 (2011).
[140] H. Yoshitake and D. Abe, "Raman Spectroscopic Study of the Framework Structure of Amorphous Mesoporous Titania", Microporous Mesoporous Mat., 119, 267-275 (2009).
[141] W.-P. Liao and J.-J. Wu, "Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array", J. Phys. Chem. Lett., 4, 1983-1988 (2013).
[142] S.-C. Hsu, W.-P. Liao, W.-H. Lin and J.-J. Wu, "Modulation of Photocarrier Dynamics in Indoline Dye-Modified TiO2 Nanorod Array/P3HT Hybrid Solar Cell with 4-Tert-Butylpridine", J. Phys. Chem. C, 116, 25721-25726 (2012).
[143] J. Wang, X.-L. Liu, A.-L. Yang, G.-L. Zheng, S.-Y. Yang, H.-Y. Wei, Q.-S. Zhu and Z.-G. Wang, "Measurement of Wurtzite ZnO/Rutile TiO2 Heterojunction Band Offsets by X-Ray Photoelectron Spectroscopy", Appl. Phys. A-Mater. Sci. Process., 103, 1099-1103 (2011).
[144] D. K.-P. Wong, C.-H. Ku, Y.-R. Chen, G.-R. Chen and J.-J. Wu, "Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye-Sensitized Solar Cells", ChemPhysChem, 10, 2698-2702 (2009).
[145] M. Quintana, T. Edvinsson, A. Hagfeldt and G. Boschloo, "Comparison of Dye-Sensitized Zno and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime", J. Phys. Chem. C, 111, 1035-1041 (2006).
[146] E. Guillén, L. M. Peter and J. A. Anta, "Electron Transport and Recombination in ZnO-Based Dye-Sensitized Solar Cells", J. Phys. Chem. C, 115, 22622-22632 (2011).
[147] Z.-J. Yang, Q.-Q. Wang and H.-Q. Lin, "Tunable Two Types of Fano Resonances in Metal–Dielectric Core–Shell Nanoparticle Clusters", Appl. Phys. Lett., 103, 111115 (2013).
[148] P. Du, Y. Cao, D. Li, Z. Liu, X. Kong and Z. Sun, "Synthesis of Thermally Stable Ag@Tio2 Core-Shell Nanoprisms and Plasmon-Enhanced Optical Properties for a P3ht Thin Film", RSC Adv., 3, 6016-6021 (2013).
[149] K.-S. Tan, M.-K. Chuang, F.-C. Chen and C.-S. Hsu, "Solution-Processed Nanocomposites Containing Molybdenum Oxide and Gold Nanoparticles as Anode Buffer Layers in Plasmonic-Enhanced Organic Photovoltaic Devices", ACS Appl. Mater. Interfaces, 5, 12419-12424 (2013).