簡易檢索 / 詳目顯示

研究生: 陳亦涵
Han, Tan Yi
論文名稱: 四氣缸雙動式α型史特靈引擎之最佳化
Computational Optimization of Four-Cylinder Double-Acting α-Type Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 111
中文關鍵詞: 雙動式最佳化史特靈引擎
外文關鍵詞: Double-acting, Optimization, Stirling engine
相關次數: 點閱:87下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合熱力學模型和簡易共軛梯度法 (Simplified conjugate-gradient method) 對四氣缸雙動式α型史特靈引擎之性能進行最佳化。利用計算流體力學 (Computational fluid dynamics, CFD) 軟體之結果對熱力學模型熱阻值進行調整。此最佳化分析目的為維持引擎之熱效率 , 同時搜尋引擎輸出功率之最佳值。最佳化之目標函數將以權重分配比例大小進行最佳化疊代 , 可應用於對引擎輸出功率與熱效率之最佳化。在使用氦氣、4.34 atm 起始壓力、 1000 rpm 和 1000 K 條件下,最佳化六種引擎設計幾何參數可得輸出功率為1086.50 W 和熱效率為20.69 % , 輸出功率提升38.59 %。此外 , 本研究也針對活塞位移參數進行最佳化 , 以探討衝程 、 流體膨脹與收縮時間和活塞處於上死點和下死點時間對引擎性能之影響。最後 , 本研究針對所有引擎幾何參數和活塞位移參數進行最佳化 , 得輸出功率為1202.23 W, 熱效率為17.79 % ,輸出功率提升53.35 %。

    In this study, the thermodynamic model is coupled with the optimization method using the simplified conjugate-gradient method to determine the four-cylinder double-acting α-type Stirling engine design for optimal performance. The thermodynamic model is modified and tuned to match the results from computational fluid dynamics software. The optimization method determines minimization of objective function by optimizing the engine power output while maintaining the thermal efficiency. This is achieved by assigning weighting coefficients to the objective function. The weighting coefficients distribution is studied to investigate their effects on power output and thermal efficiency. By considering six engine geometrical parameters, the optimized engine can achieve the power output of 1086.50 W and 20.69 % thermal efficiency using helium with initial charged pressure of 4.34 atm, engine speed of 1000 rpm and heating temperature of 1000 K. The present optimal engine design gives the improvement by 38.59 % in power output. In addition, only the piston motion trajectory of the engine is optimized to study the effects of varying stroke, expansion and compression time, as well as dwell time at piston top dead center and bottom dead center. In the final stage of this study, all the engine geometrical parameters and piston motion trajectory as well are optimized. This yields the engine performance with the power output of 1202.23 W and thermal efficiency of 17.79 %. This optimal engine design gives 53.35 % improvement of power output as compared to the baseline engine design.

    摘要.................................................................................................................................................. i ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENT ............................................................................................................. iii LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii NOMENCLATURE ....................................................................................................................... x CHAPTER 1 INTRODUCTION .................................................................................................... 1 1.1 Four-Cylinder Double-Acting α-Type Stirling Engine ..................................................... 2 1.2 Literature Review .............................................................................................................. 2 1.2.1 Thermodynamic model for Stirling engine ............................................................ 2 1.2.2 Computational fluid dynamics analysis for prediction of engine performance ..... 3 1.2.3 Thermodynamic optimization of Stirling engine ................................................... 4 1.2.4 Optimization methods ............................................................................................ 5 1.3 Motivation of Study ........................................................................................................... 7 1.4 Purpose of Research .......................................................................................................... 8 1.5 Thesis Outline .................................................................................................................... 8 CHAPTER 2 THERMODYNAMIC MODEL .............................................................................. 9 2.1 Piston Displacement and Chamber Volume ...................................................................... 9 2.2 Thermodynamic Model ................................................................................................... 15 2.2.1 Initial conditions .................................................................................................... 15 2.2.2 Mass ....................................................................................................................... 16 2.2.3 Pressure variation .................................................................................................. 17 2.2.4 Mass flow rate ....................................................................................................... 18 2.2.5 Temperature and pressure ...................................................................................... 19 2.2.6 Pressure loss calculation ........................................................................................ 26 2.2.7 Engine performance ............................................................................................... 29 2.3 Computational Fluid Dynamics Model ........................................................................... 30 2.3.1 Governing equations .............................................................................................. 31 2.3.2 Porous medium theory ........................................................................................... 34 2.3.3 Turbulence model .................................................................................................. 36 2.3.4 Working fluid properties ....................................................................................... 37 2.3.5 Grid independence check ...................................................................................... 37 2.3.6 Boundary conditions and initial conditions ........................................................... 38 CHAPTER 3 OPTIMIZATION METHODS .............................................................................. 39 3.1 Simplified Conjugate-Gradient Method (SCGM) [20] .................................................... 39 3.2 Constraints ....................................................................................................................... 42 3.3 Optimization Weighting Coefficients .............................................................................. 43 CHAPTER 4 RESULTS AND DISCUSSION ............................................................................ 44 4.1 Comparison between Thermodynamic Model and Computational Fluid Dynamics Analysis ................................................................................................................................. 44 4.2 Parametric Analysis ......................................................................................................... 45 4.2.1 Effects of chamber diameter on power output and thermal efficiency ................. 45 4.2.2 Effects of heater geometry on power output and thermal efficiency .................... 46 4.2.3 Effects of cooler geometry on power output and thermal efficiency .................... 47 4.2.4 Effects of wire mesh geometry of regenerator on power output and thermal efficiency ........................................................................................................................ 48 4.2.5 Effects of piston linkage proportion to power output and thermal efficiency ....... 48 4.2.6 Effects of angle for piston dwell at TDC on engine performance ......................... 49 4.2.7 Effects of angle for piston motion from TDC to BDC on engine performance .... 50 4.2.8 Effects of angle for piston dwell at BDC on engine performance ........................ 50 4.2.9 Effects of stroke on engine performance ............................................................... 51 4.3 Optimization of Baseline Engine Geometrical Parameters ............................................. 51 4.3.1 Optimization of baseline engine geometrical parameters for high power output.. 52 4.3.2 Optimization of baseline engine geometrical parameters for high thermal efficiency ........................................................................................................................ 53 4.4 Numerical Simulation of Engine with Optimized Geometrical Parameters (Case 3) ..... 54 4.5 Optimization of Only Piston Motion Trajectory for Baseline Case ................................ 55 4.6 Optimization of Only Piston Motion Trajectory for Case 3 ............................................ 55 4.7 Optimization of Engine Geometrical Parameters and Piston Motion Trajectory (Case 4) ............................................................................................................................................ 56 CHAPTER 5 CONCLUSIONS ................................................................................................... 58 REFERENCES ............................................................................................................................. 60

    1. T. Mancini, P. Heller, B. Butler, B. Osborn, W. Schiel, V. Goldberg, R. Buck, R. Diver, C. Andraka and J. Moreno. "Dish-Stirling Systems: An Overview of Development and Status." Journal of Solar Energy Engineering. Vol. 125.2, pp. 135-151, 2003.
    2. I. Kolin, S. Koscak-Kolin, and M. Golub. "Geothermal Electricity Production by Means of the Low Temperature Difference Stirling Engine." Proceedings World Geothermal Congress, pp. 3199-3203, 2000.
    3. F. Trieb, O. Langniβ, and H. Klaiβ. "Solar Electricity Generation—A Comparative View of Technologies, Costs and Environmental Impact." Solar energy. Vol 59 (1-3), pp. 89-99, 1997.
    4. T. Y. Fung, Theoretical Analysis and Design of Double Acting Four-Cylinder Stirling Engine, Master thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2017.
    5. D. Clucas and J. Raine. “The WhisperGen: A Strategy for Commercial Production”, Proc. 8th ICSC, pp. 159-168, 1997.
    6. H. S. Yang, and C. H. Cheng. "Development of a Beta-Type Stirling Engine with Rhombic-Drive Mechanism Using a Modified Non-Ideal Adiabatic Model." Applied Energy. Vol. 200, pp. 62-72, 2017.
    7. Y. X. Yu, Z. C. Yuan, J. Y. Ma and Q. Zhu. "Numerical Simulation of a Double-Acting Stirling Engine in Adiabatic Conditions." Advanced Materials Research. Vol. 482, pp. 589-594, 2012.
    61
    8. C. H. Cheng and Y. J. Yu. "Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine with Rhombic-Drive Mechanism." Renewable Energy. Vol. 35.11, pp. 2590-2601, 2010.
    9. T. Nguyen, Numerical Simulation of Thermal and Flow Field in a Double-Acting Alpha-Type Stirling Engine, Master thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2015.
    10. H. Y. Yang, Numerical Simulation of Three-Dimensional Thermal and Flow Fields in a Four-Cylinder Double-Acting Stirling Engine, Master thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2017.
    11. E. C. Landrum, T. J. Conrad, S. M. Ghiaasiaan and C. S. Kirkconnell. "Hydrodynamic Parameters of Mesh Fillers Relevant to Miniature Regenerative Cryocoolers." Cryogenics. Vol. 50.6, pp. 373-380, 2010.
    12. A. A. Boroujerdi and M. Esmaeili. "Characterization of the Frictional Losses and Heat Transfer of Oscillatory Viscous Flow Through Wire-Mesh Regenerators." Alexandria Engineering Journal. Vol. 54.4, pp. 787-794, 2015.
    13. H. D. Kuehl. “Numerically Efficient Modelling of Non-Ideal Gases and their Transport Properties in Stirling Cycle Simulation”, Proceedings of 17th International Stirling Engine Conference and Exhibition (ISEC), pp. 572-579, August 24-26, 2016, Newcastle upon Tyne, UK.
    14. C. H. Cheng, and H. S. Yang. "Optimization of Rhombic Drive Mechanism Used in Beta-Type Stirling Engine Based on Dimensionless Analysis." Energy. Vol. 64, pp. 970-978, 2014.
    62
    15. J. R. Senft. "Optimum Stirling engine geometry." International Journal of Energy Research. Vol. 26.12, pp. 1087-1101, 2002.
    16. M. C. Campos, J. V. C. Vargas, and J. C. Ordonez. "Thermodynamic Optimization of a Stirling Engine." Energy. Vol. 44.1, pp. 902-910, 2012.
    17. G. Walker. "An Optimization of the Principal Design Parameters of Stirling Cycle Machines." Journal of Mechanical Engineering Science. Vol 4.3, pp. 226-240, 1962.
    18. V. K. Gopal, R. Duke, and D. Clucas. "Active Stirling Engine." TENCON 2009-2009 IEEE Region 10 Conference, pp. 1-6. IEEE, 2009.
    19. Q. H. Chen, Optimal Design of a Pulse-Tube Stirling Engine by Simplified Conjugate Gradient Method, Master thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2015.
    20. C. H. Cheng and M. H. Chang. "A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data." Numerical Heat Transfer: Part B: Fundamentals. Vol. 43.5, pp. 489-507, 2003.
    21. A. Tramontin, Optimization of an Air Bearing Device Using Surrogate Modelling and Simplified Conjugate Gradient Method, Master thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2016.
    22. M. H. Ahmadi, H. Sayyaadi, A. H. Mohammadi and M. A. Barranco-Jimenez. "Thermo-Economic Multi-Objective Optimization of Solar Dish-Stirling Engine by Implementing Evolutionary Algorithm." Energy Conversion and Management. Vol. 73, pp. 370-380, 2013.
    23. R. A. Ackermann. Cryogenic regenerative heat exchangers. Springer Science & Business Media, 2013.
    63
    24. W. M. Rohsenow and Y. I. Cho. Handbook of heat transfer. Edited by James P. Hartnett. Vol. 3. : McGraw-Hill, New York, 1998.
    25. T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine. Fundamentals of heat and mass transfer. John Wiley & Sons, New York, 2011.
    26. W. M. Kays and A. L. London, Compact heat exchangers. Mcgraw-Hill, New York, 1984.
    27. ANSYS Fluent Theory Guide 15.0, ANSYS Fluent, 2013.
    28. F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”. AIAA Journal. Vol. 32(8), pp. 1598-1605, 1994.
    29. R. H. Aungier, “A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications”. Journal of Fluids Engineering. Vol. 117, pp. 277-281, 1995.
    30. Y. T. Lin and C. H. Cheng, Modified Simplified Conjugate-Gradient Method, Personal communication.

    下載圖示 校內:2020-07-20公開
    校外:2020-07-20公開
    QR CODE