| 研究生: |
陳冠帆 Chen, Kuan-Fan |
|---|---|
| 論文名稱: |
韌性剪力牆行為之有限元素分析 Finite Element Analysis Of High Seismic Performance Walls |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng 許茂雄 Sheu, Maw-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 韌性行為 、斜向配筋 、擠壓現象 |
| 外文關鍵詞: | OpenSees, Finite Element Analysis, pinching -effect |
| 相關次數: | 點閱:88 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣在歷經921大地震的重傷後,結構物的耐震能力比起過去格外的受到重視,而鋼筋混凝土所構成的剪力牆也正廣泛的被應用在建築結構上以作為耐震構材之一;剪力牆或者鑲嵌於柱樑構架內的RC牆在結構耐震安全上所呈現的主要功能為提升結構的勁度與消能,但是在傳統剪力牆的結構行為趨向脆性結構行為,且其載重-變形遲滯圈的行為也明顯顯示了擠壓現象(pinching -effect)而降低消能。因此,如何提升剪力牆之結構韌性與消能行為實為國內、外研究學者所亟欲解決之問題。
本文研究目的在探求剪力牆-構架之結構韌性行為,找出良好的韌性消能機制並藉由有限元素法的理論分析驗證實驗所得結果;另外則探究純構架系統與剪力牆系統之間的差異並比較不同鋼筋形式排列對韌性消能的影響。鋼筋混凝土剪力牆主要承受的為剪力,不同於梁、柱所承受的撓曲作用,但是由於混凝土材料的特性,鋼筋混凝土結構受力後容易產生裂縫,最終造成開裂破壞,這即為剪力牆受力行為的主要破壞機制。
本文實驗規劃旨在探求出一高韌性的剪力牆行為機制,以便地震力屆臨時達到良好的消能作用及耐震行為,因此實驗規劃中除了比較純構架系統與含邊柱剪力牆系統的差異外,並針對剪力牆的主應力分佈作一扇型配筋形式的改良以求得到良好的消能行為。故試體的原型系統共分:(a)構架系統(柱樑系統)(b)傳統配筋含邊柱剪力牆系統(c)45度斜向配筋含邊柱剪力牆系統(d)扇形配筋含邊柱剪力牆系統,利用側向反覆載重加載至破壞之實驗結果配合OpenSees (Open System for Earthquake Engineering Simulation)有限元素分析,探討鋼筋混凝土含牆構架之開裂載重、降伏載重、極限載重與結構韌性等牆體力學性質並比較其差異。
The Chi-Chi earthquake (September 21, 1999) in Taiwan induced severe damage of school buildings. The investigations on the failure of buildings show that these damaged buildings are mainly caused by shear failure of short column, insufficient walls, and too small column cross-section. RC Shear walls have been recognized as efficient earthquake resistance elements. Framed shear walls are extensively used as the components of earthquake resistance buildings. However, the conventional shear walls, which the reinforcements are in vertical and horizontal directions, frequently possess pinching-effect in the load-displacement curves. The improvement of conventional shear wall to reduce the pinching-effect sounds an essential research.
The OpenSees (Open System for Earthquake Engineering Simulation) finite element model is adopted to analyze the experimental results. These specimens include framed shear walls with high-, middle-, low-rise framed shear walls, pure frames, pure walls, and high seismic performance framed walls. The reinforcements of high seismic performance walls were designed with 45° reinforcements, 45° and boundary vertical reinforcements, and hybrid conventional and 45° reinforcements.
The experimental results showed that the failure of high-rise shear walls is flexural; their ductility factors are greater than those of low-rise shear walls; their displacements are also greater. The middle-rise shear walls failed by a combination of both flexure and shear. The experimental results also show that the crack load, yield load, and limit load are superior for specimens with higher concrete strength and frame with wall. The numerical solutions agree well with the experimental results.
The results show that the pinching-effect, which frequently existed in the conventional shear walls, is remarkably improved in the new design high seismic performance walls. The larger steel ratio in the shear walls with 45° reinforcements induces less pinching-effect. The structural behavior is highly dependent on the layout of reinforcements of walls. The new design shear wall possesses high potential to improve the seismic performance of buildings, and the proposed numerical model will be a fundamental of model-based simulation of concrete structures.
1. Tekeda, T., Sozen, M. A., and Nielaen, N. N., “Reinforced Concrete Response to Simulated Earthquakes”, Journal of the Structure Division, ASCE, Vol.96, pp.2557-2573, 1970.
2. Roufail, M. S. L. and Meyer, C., “Analytical Modeling of Hysteretic Behavior of RC Frames”, Journal of Structural Engineering, ASCE, Vol.113, No.3, March, pp.429-443, 1987.
3. Otani, S. and Sozen, M. A., “Behavior of Multistory Reinforced Concrete Frames During Earthquakes”, Structural Research Series No.392, Univ. of Illinois, Urbana III, 1972.
4. Yamazaki, J. and Hawkins, N. M., “Shear and Moment Transfer between Reinforced Concrete Flat Plates and Columns”, ST. and ME. Report SM75-2, Depart. Of Civil Engineering. Univ. of Wash. Seattle, Sept. 1975.
5. Chiou, Y. J., J. C. Tzeng, and S. C. Hwang, “Discontinuous Deformation Analysis for Reinforced Concrete Frames Infilled with Masonry Walls,” Structural Engineering and Mechanics, An International Journal, Vol.6, No.2, pp.201-215, 1998.
6. 李威聰,「含牆鋼筋混凝土構架試驗研究」,國立成功大學土木工程研究所碩士論文,2001
7.Barda, F., J.M. Hanson, and W.G. Corley, “Shear Strength of Low-Rise Walls with Boundary Elements,” R.C. Structure in Seismic Zones, ACI, edited by N.M. Hawkins, 1977.
8.Benjamin, Jack R., and Harry A. Williams, “The Behavior of One-Story Reinforced Shear Wall,” Journal of the Structural Division, ASCE, May, pp.1254-1-pp.1254-49, 1957.
9.Chiou, Y. J., J. C. Tzeng, and S. C. Hwang, “Discontinuous Deformation Analysis for Reinforced Concrete Frames Infilled with Masonry Walls,” Structural Engineering and Mechanics, An International Journal, Vol.6, No.2, pp.201-215, 1998.
10. Mo, Y. L., Disc. of “Shear Design and Analysis of Low-Rise Structural Walls, by S. T. Mau and T. T. C. Hsu”, ACI Structural Journal, Vol.84, No.1, January-February, pp.91-92, 1987.
11. 郭雄銘,「鋼筋混凝土低型剪力牆承受反向重覆載重之行為研究」,國立成功大學建築工程研究所碩士論文,1986.
12. 林仕修,「低型剪力牆實驗與理論分析之研究」,國立成功大學土木工程研究所碩士論文,1993。
13. 郭健仁,「構架-剪力牆結構互制」,國立成功大學土木工程研究所碩士論文,1997。
14. Fintel, M., “Shearwall-An Answer for Seismic Resistance”, Concrete International, July, pp.48-53, 1991.
15. Hsu, T. T. C. and Mau, S. T., Concrete Shear in Earthquake, Elsevier Applied Science, New York, 1991.
16. 莫詒隆,「剪力牆-最佳之樓房抗震結構」,結構工程,第七卷,第四期,pp.59-63,民國八十一年十一月。
17. Hsu, T. T., and Mo, Y. L., “Softening of Concrete in Low-Rise Shear Walls”, Journal of the American Concrete Institute, Vol.82, No.6, November-December, pp.883-889, 1985.
18. . Mau, S. T. and Hsu, Thomas T. C., “Shear Design and Analysis of Low-rise Structural Walls,” ACI Journal, Vol. 83, No. 2, 306-315, 1986.
19. Mau, S. T. and Hsu, Thomas T. C., “Shear Behavior of Reinforced Concrete Framed Wall Panels with Vertical Load,” ACI Structural Journal, Vol. 84, No. 2, 228-234, 1987
20. Mo, Y. L., “Analysis and Design of Low-rise Structural Walls under Dynamically Applied Shear Forced,” ACI Journal, Vol. 85, No. 2, pp. 180-189, 1988.
21. Pang, X. B. and Hsu, Thomas T. C., “Behavior of reinforced concrete membrane elements in shear,” ACI Journal, Vol. 92, No. 6, pp. 665-679, 1995.
22. Pang, X. B. and Hsu, Thomas T. C., “Fixed angle softened truss model for reinforced concrete,” ACI Journal, Vol.93, No.2, pp. 197-207, 1996.
23. Vecchio, F. J. and M. P. Collins, “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, March-April, pp. 219-231, 1986.
24. Vecchio, F. J., “Nonlinear Finite Element Analysis of Reinforced Concrete Membranes,” ACI Structural Journal, Vol. 96, No. 1, pp. 26-35, 1989.
25. Bazant, Z. P., J. Pan, and G. Pijaudier-Cabot, “Softening in Reinforced Concrete Beams and Frames,” Journal of Structural Engineering, ASCE, Vol. 113, No. 12, pp. 2333-2347, 1987.
26. Verghese, T. Z. V., and C. S. Krishhamoorthy, “A Study of Finite Element and Mathematical Programming Models for Inelastic Analysis of Concrete Framed Structures,” Computer and Structures, Vol. 43, No. 6. pp. 1007-1018, 1992.
27. Ke, T. C., “Artificial joint-based on manifold method,” Working Forum on the Manifold Method of Material Analysis, California, U.S. A., Vol. 1, pp. 21-38, 1995.
28..Mansour, M, J. Y. Lee, and Thomas T. C. Hsu, “Cyclic Stress-Strain Curves of Concrete and Steel Bars in Membrane Elements,” Journal of Structural Engineering, ASCE, Vol. 127, No. 12, pp. 1402-1411, 2001.
29..Mansour, M, Behavior of Reinforced Concrete Membrane Elements under Cyclic Shear: Experiments to Theory, Ph. D. Dissertation, Department of Civil and Environmental Engineering, University of Houston, U.S.A., 2001.
30. 羅必達, 「低型鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,國立成功大學建築工程研究所碩士論文,民國七十七年六月。
31. 陳亦信, 「低型鋼筋混凝土槽縫剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,國立成功大學建築工程研究所碩士論文,民國七十七年六月。
32. Mckenna, F. and Fenves, G. (2000), The OpenSees Command Premier, PDF file Downloaded from the website, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, September.
33. Kent, D.C. and Park, R. (1971), “Flexural Members with Confined Concrete,” Journal of. The Structural Division, ASCE, Vol. 97, No. 7, pp.1969-1990.
34. Karsan, I. D. and Jirsa, J. O. (1969), “Behavior of Concrete under Compressive Loadings,” Journal of the Structural Division, ASCE, Vol. 95, No. ST12.
35.Hsu, T. T. C., “Concrete stiffness matrices for membrane elements,” Structural Engineering and Mechanics, Vol. 5, No. 5, 1997, pp. 599-608.
36.Zhu, R. R. H. and Hsu, T. T. C., “Poisson Effect of Reinforced Concrete Membrane Elements,” Structural Journal of the American Concrete Institute, Vol. 99, No. 5, Sept.-Oct., 2002, pp. 631-640.
37.Zhu, R. H., Hsu, T. T. C. and Lee, J. Y., “Rational Shear Modulus for Smeared Crack Analysis of Reinforced Concrete,” Structural Journal of the American Concrete Institute, Vol. 98, No. 4, July-Aug. 2001, pp. 443-450.