| 研究生: |
李旻 Li, Min |
|---|---|
| 論文名稱: |
分析基於三維空間點雲的曲面重建方法:過濾泊松與B樣條 Analysis of 3D Point Cloud-Based Surface Reconstruction Methods: Screened Poisson Vs. B-Spline |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 共同指導教授: |
連震杰
Lian, Zhen-Jie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 點雲 、B樣條 、多階層B樣條逼近 、泊松方程 、過濾泊松方程 、逆向工程 |
| 外文關鍵詞: | Point cloud, B-spline, Multilevel B-spline Approximation, Poisson, Screened Poisson Equation, Reverse Engineering |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
曲面重建,是一個利用掃描資料組建的物體表面形狀的過程。藉由各種不同的掃描方法,我們能以離散的方式,獲得有興趣的物體表面的形狀資訊,而後通過這些離散的點資訊再重新構築為更密集的點甚至是連續的表面。近年來3D列印的技術較為成熟,價格也有所降低,使得相關設備的使用日漸眾多。本實驗室提出一個架構,採用非接觸式的3D掃描設備獲取物體資訊,並以3D列印設備收尾,建立了一個完整的三維逆向工程系統。而本論文著眼於分析和比較曲面重建方法中,針對輸入點雲的可靠性較高的案件的二種演算法,並且結合二種演算法,提出適用於我們的實際案件的架構。在物體的掃描結果本身較完整保留幾何和拓樸資訊的情況下,重建出三維逆向工程中所需的連續曲面並交予3D列印設備後續重建出物體的模型。
Surface reconstruction is a process that uses scanned point cloud to construct the original surface of an object. By using some different scanning methods, we can obtain the information of the surface of the object that we interested in, and then reconstruct these information into much more intensive point clouds or even continuous surface. In recent years, due to the maturity of 3D printing technology, the price of 3D printing tools have decreased. The laboratory proposed a framework that acquires information of objects using non-contact 3D scanning device and gets reconstructed models using 3D printing tools to make the whole system fully operational.
This research is focus on analyzing and comparing the two algorithms which face to the cases having high reliability of point clouds, and further proposed the framework combing to methods to deal with the object that we interested in. Which means that we can reconstruct the surface of objects by using point clouds which have geometry and topology information kept in intact and then get the model using 3D printer.
[1] Bhatt, A.; Goel. A.; Gupta, U.: Awasthi, S.: Reconstruction of Branched Surfaces: Experiments with Disjoint B-spline Surface, Computer-Aided Design and Applications, 12(1), 2015, 76–85.
[2] C.-H. Shen, H. Fu, K. Chen, and S.-M. Hu. Structure recovery by part assembly. ACM Transactions on Graphics (TOG), 2012
[3] Les Piegl and Wayne Tiller, “The NURBS Book,” 2nd Edition 1997.
[4] LI G., LIU L., ZHENG H., MITRA N. J.: Analysis, reconstruction and manipulation using arterial snakes. Proc. of ACM SIGGRAPH Asia (2010).
[5] Michael Mortenson, “Geometric Modeling” 1985
[6] M. Berger et aI., "A Survey of Surface Reconstruction from Point Clouds," Computer Graphics Forum, vol. 36, no. I, March 2016.
[7] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Visualization Comput. Graph., vol. 3, pp. 228–244, July 1997.
[8] T. Lyche and K. Morken, “Making the Oslo Algorithm More Efficient,” SIAM J. Numerical Analysis, vol. 23, no. 3, pp. 663-675, 1986.
[9] TAGLIASACCHI, A., OLSON, M., ZHANG, H., HAMARNEH, G.,AND COHEN-OR, D. 2011. Vase: Volume-aware surface evolution for surface reconstruction from incomplete point clouds.Computer Graphics Forum (Proc. Eurographics Symp. on Geometry Processing) 30, 5, 1563–1571.
[10] VANEGAS C. A., ALIAGA D. G., BENES B.: Automatic extraction of manhattan-world building masses from 3d laser range scans. Trans. on Visualization and Computer Graphics (2012).
[11] W.M. Hsu, J.F. Hughes, and H. Kaufman, “Direct Manipulation of Free-Form Deformations,” Computer Graphics (Proc. SIGGRAPH ‘92), vol. 26, no. 2, pp. 177-184, 1992.
[12] YANG, H. P., WANG, W., AND SUN, J. G. 2004. Control point adjustment for b-spline curve approximation. Comput.-aided Design 36, 639–652.
[13] YIN, K., HUANG, H., ZHANG, H., GONG, M., COHEN-OR, D., AND CHEN, B. 2014. Morfit: Interactive surface reconstruction from incomplete point clouds with curve-driven topology and geometry control. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 33, 6, 41:1–41:12