簡易檢索 / 詳目顯示

研究生: 劉耕廷
Liu, Geng-Ting
論文名稱: 梯度聲子晶體應用於聲學與機械系統之研究
Applications of graded phononic crystals on acoustic and mechanical systems
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 118
中文關鍵詞: 聲子晶體空間變動晶格自我準直現象梯度折射率
外文關鍵詞: phononic crystals, spatially variant lattice, self-collimation, graded index
相關次數: 點閱:81下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於任何形式的波而言,是無法僅藉由單一均質性的材料所控制,必須具有如梯度分佈、材料間介面以及曲線排列等某種程度的非均質性存在,才能被加以控制。
    而本文所探討的聲子晶體是由兩種或兩種以上不同的彈性材料或流體經週期排列所構成的結構,進而具有聲子能隙(禁止帶)與特殊的色散現象(通帶)。然而,於巨觀下,聲子晶體所擁有的禁止帶與通帶特性皆僅為均質的性質,因此,對於在控制彈性波或聲波上的應用十分有限。藉此,本文利用了一種名為空間變動晶格的晶格轉換法,有效地將原始均勻晶格分佈下之晶體,依所設想的形式進行轉換,如單位晶胞的旋轉角、晶格常數以及填充比等分佈,而轉換後之晶格分佈具有連續、平滑、無缺陷及最小形變量等特性,在最大限度下保持單位晶胞的尺寸與形狀,藉以於空間中分佈原始晶格所具有的現象。並基於如此非均質性的分佈下,來控制波的傳遞。
    接著,本文選用背景基材為流體,散射體為彈性體所構成的二維聲子晶體,並在兩種幾何形式的散射體下,分別為矩形柱與圓形柱,利用平面波展開法計算聲子晶體之能帶結構圖與等頻圖來分析其波傳特性,並以有限元素軟體加以模擬並相互驗證。最後,針對由矩形柱週期排列而成的聲子晶體上,所對應到的自我準直現象,藉由空間變動晶格的轉換,以有效地於結構中控制自我準直聲束進行彎曲轉向傳遞;針對由圓形柱週期排列而成的聲子晶體於低頻(長波長)下,可等效成均質材料的特性,依經空間變動後的晶格分佈與所對應到的等效折射率與圓形柱幾何之關係,有效益地構成梯度聲子晶體,進以實現彎曲聲波導與聲學黑洞等聲學元件。

    The present study propose using the numerical technique, which names synthesis of spatially variant lattice, to spatially vary the orientation of the unit cell, lattice spacing, filling ratio and other properties of a periodic structure throughout its volume in a way that leaves the overall lattice smooth, continuous, defect-free and minimal deformation. Based on keeping the geometry of the unit cells in a spatially variant lattice consistent with that of a uniform lattice, the ability to spatially vary the orientation of the unit cells throughout a lattice enables directional phenomena like band gaps, anisotropy and dispersion to be fully exploited to control the waves. Considering two-dimensional square lattice phononic crystals with two kinds of elastic inclusions (rectangular and circular inclusions) immersed in fluid, the plane wave expansion method is used to obtain the band structures and equi-frequency contours of the phononic crystals. And, the finite element commercial software is employed to simulate the acoustic pressure field in the structures. As a result, using spatially variant lattice to spatially vary self-collimation of the two-dimensional phononic crystals of rectangular inclusions can manipulate the self-collimation beam with abrupt bends. Besides, using spatially variant lattice to spatially vary the effective refractive index of the two-dimension phononic crystals of circular inclusions can realize the acoustic bending waveguide and acoustic black hole.

    中文摘要 I 英文摘要 II 致謝 VII 目錄 VIII 圖目錄 XI 符號 XVI 第一章 緒論 1 1-1 工程材料 1 1-2聲子晶體 2 1-2-1 類比於光子晶體的聲子晶體 2 1-2-2 聲子晶體能隙現象 3 1-2-3 聲子晶體色散現象 4 1-2-4 聲子晶體之等效折射率與梯度折射率聲子晶體 5 1-3 空間變動晶格 7 1-4 本文架構 10 第二章 空間變動晶格 11 2-1 空間變動平面光柵 (spatially-variant planar grating) 11 2-1-1 平面光柵與光柵向量 11 2-1-2 光柵相位 13 2-1-3 空間變動平面光柵 16 2-2 空間變動晶格 18 2-2-1以複數型傅立葉級數展開空間晶格 18 2-2-2 空間變動晶格 21 第三章 數值方法 27 3-1 彈性動力學與波傳理論 28 3-1-1 彈性動力學基本方程式 28 3-1-2 彈性波方程式 29 3-1-3 聲波方程式[55] 31 3-2固態物理學基本定義 34 3-2-1真實晶格空間與倒晶格空間 34 3-2-2布洛赫定理(Bloch’s theorem) 35 3-3平面波展開法 36 3-4有限元素法 42 3-4-1聲學模組之有限元素法推導 42 3-4-2邊界條件(boundary condition) 45 第四章 空間變動具自我準直現象之聲子晶體 46 4-1 矩形柱聲子晶體 46 4-1-1 幾何與材料參數設定 46 4-1-2 能帶結構與等頻圖分析 47 4-1-3 自我準直現象之模擬 52 4-2 形成空間變動晶格線與晶格點 55 4-2-1 九十度彎曲晶格 56 4-2-2 連續彎曲晶格 59 4-3 操縱自我準直聲束 62 4-3-1九十度彎曲聲波導之模擬 62 4-3-2 連續彎曲聲波導之模擬 66 4-3-3 比較 70 第五章 空間變動等效折射率之聲子晶體 73 5-1 圓形柱聲子晶體 74 5-1-1 幾何與材料參數設定 74 5-1-2 能帶結構與等頻圖分析 74 5-1-3 等效折射率 76 5-2 彎曲型聲波導 78 5-2-1 彎曲型聲波導 78 5-2-2 折射率、圓柱形半徑與填充比之關係 79 5-2-3 彎曲型聲波導晶格 80 5-2-4 模擬結果 82 5-2-5 比較 83 5-3 聲學黑洞 85 5-3-1 理想聲學黑洞折射率分佈 85 5-3-2 折射率、圓柱形半徑與填充比之關係 86 5-3-3 聲學黑洞晶格 87 5-3-4 模擬結果 89 第六章 綜合結論與未來展望 91 6-1 綜合結論 91 6-2 未來展望 92 參考文獻 94

    [1] T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit and W. B. Carter,"Ultralight metallic microlattices", Science, Vol. 334, No. 6058, pp. 962-965. (2011).
    [2] E. Yablonovitch,"Inhibited spontaneous emission in solid-state physics and electronics", Phys Rev Lett, Vol. 58, No. 20, pp. 2059-2062. (1987).
    [3] S. John,"Strong localization of photons in certain disordered dielectric superlattices", Phys Rev Lett, Vol. 58, No. 23, pp. 2486-2489. (1987).
    [4] E. Yablonovitch and T. J. Gmitter,"Photonic band structure: The face-centered-cubic case", Phys Rev Lett, Vol. 63, No. 18, pp. 1950-1953. (1989).
    [5] M. Sigalas and E. Economou,"Elastic and acoustic wave band structure", Journal of sound and vibration, Vol. 158, No. 2, pp. 377-382. (1992).
    [6] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani,"Acoustic band structure of periodic elastic composites", Phys Rev Lett, Vol. 71, No. 13, pp. 2022-2025. (1993).
    [7] A. Bousfia, E. H. El Boudouti, B. Djafari-Rouhani, D. Bria, A. Nougaoui and V. R. Velasco,"Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures", Surface Science, Vol. 482-485, pp. 1175-1180. (2001).
    [8] B. Manzanares-Martínez, J. Sánchez-Dehesa, A. Håkansson, F. Cervera and F. Ramos-Mendieta,"Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems", Applied physics letters, Vol. 85, No. 1, pp. 154-156. (2004).
    [9] M. Kushwaha and P. Halevi,"Band‐gap engineering in periodic elastic composites", Applied Physics Letters, Vol. 64, No. 9, pp. 1085-1087. (1994).
    [10] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski and B. Djafari-Rouhani,"Theory of acoustic band structure of periodic elastic composites", Physical Review B, Vol. 49, No. 4, pp. 2313-2322. (1994).
    [11] M. S. Kushwaha,"Stop-bands for periodic metallic rods: Sculptures that can filter the noise", Applied Physics Letters, Vol. 70, No. 24, pp. 3218-3220. (1997).
    [12] Z. Liu, C. T. Chan and P. Sheng,"Three-component elastic wave band-gap material", Physical Review B, Vol. 65, No. 16, (2002).
    [13] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan and P. Sheng,"Locally resonant sonic materials", Science, Vol. 289, No. 5485, pp. 1734-1736. (2000).
    [14] X. Zhang, Z. Liu and Y. Liu,"The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance", The European Physical Journal B, Vol. 42, No. 4, pp. 477-482. (2005).
    [15] M. Ruzzene and A. Baz,"Control of wave propagation in periodic composite rods using shape memory inserts", Journal of Vibration and Acoustics, Vol. 122, No. 2, pp. 151-159. (2000).
    [16] M. Ruzzene and A. M. Baz, in SPIE's 7th Annual International Symposium on Smart Structures and Materials. (International Society for Optics and Photonics, (2000)), pp. 389-407.
    [17] T. Chen, M. Ruzzene and A. Baz,"Control of wave propagation in composite rods using shape memory inserts: theory and experiments", Journal of Vibration and control, Vol. 6, No. 7, pp. 1065-1081. (2000).
    [18] J.-Y. Yeh,"Control analysis of the tunable phononic crystal with electrorheological material", Physica B: Condensed Matter, Vol. 400, No. 1-2, pp. 137-144. (2007).
    [19] W.-P. Yang and L.-W. Chen,"The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator", Smart Materials and Structures, Vol. 17, No. 1, p. 015011. (2008).
    [20] K. Bertoldi and M. C. Boyce,"Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures", Physical Review B, Vol. 77, No. 5 (2008).
    [21] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares and F. Meseguer,"SOUND-ATTENUATION BY SCULPTURE", Nature, Vol. 378, No. 6554, pp. 241-241. (1995).
    [22] E. L. Thomas, T. Gorishnyy and M. Maldovan,"Phononics: Colloidal crystals go hypersonic", Nat. Mater., Vol. 5, No. 10, pp. 773-774. (2006).
    [23] J. Wen, G. Wang, D. Yu, H. Zhao and Y. Liu,"Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure", Journal of Applied Physics, Vol. 97, No. 11, p. 114907. (2005).
    [24] M. Sigalas,"Elastic wave band gaps and defect states in two-dimensional composites", The Journal of the Acoustical Society of America, Vol. 101, No. 3, pp. 1256-1261. (1997).
    [25] F. Wu, Z. Hou, Z. Liu and Y. Liu,"Point defect states in two-dimensional phononic crystals", Physics Letters A, Vol. 292, No. 3, pp. 198-202. (2001).
    [26] T. Miyashita, in Ultrasonics Symposium, 2004 IEEE. (IEEE, (2004)), vol. 2, pp. 946-949.
    [27] X. Zhang, Z. Liu, Y. Liu and F. Wu,"Defect states in 2D acoustic band-gap materials with bend-shaped linear defects", Solid State Communications, Vol. 130, No. 1-2, pp. 67-71. (2004).
    [28] J. B. Pendry,"Negative refraction makes a perfect lens", Physical review letters, Vol. 85, No. 18, p. 3966. (2000).
    [29] V. G. Veselago,"The electrodynamics of substances with simultaneously negative values of ε and μ", Soviet physics uspekhi, Vol. 10, No. 4, p. 509. (1968).
    [30] M. Notomi,"Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap", Physical Review B, Vol. 62, No. 16, pp. 10696-10705. (2000).
    [31] X. D. Zhang and Z. Y. Liu,"Negative refraction of acoustic waves in two-dimensional phononic crystals", Applied Physics Letters, Vol. 85, No. 2, pp. 341-343. (2004).
    [32] W. Liu and X. Su,"Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals", Physics Letters A, Vol. 374, No. 29, pp. 2968-2971. (2010).
    [33] A. Cicek, O. A. Kaya and B. Ulug,"Impacts of uniaxial elongation on the bandstructures of two-dimensional sonic crystals and associated applications", Applied Acoustics, Vol. 73, No. 1, pp. 28-36. (2012).
    [34] A. Cicek, O. A. Kaya and B. Ulug,"Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases", Journal of Physics D: Applied Physics, Vol. 44, No. 20, p. 205104. (2011).
    [35] E. Soliveres, V. Espinosa, I. Perez-Arjona, V. J. Sanchez-Morcillo and K. Staliunas,"Self collimation of ultrasound in a three-dimensional sonic crystal", Applied Physics Letters, Vol. 94, No. 16 (2009).
    [36] A. Cebrecos, V. Romero-García, R. Picó, I. Pérez-Arjona, V. Espinosa, V. J. Sánchez-Morcillo and K. Staliunas,"Formation of collimated sound beams by three-dimensional sonic crystals", Journal of Applied Physics, Vol. 111, No. 10, p. 104910. (2012).
    [37] B. Morvan, A. Tinel, J. O. Vasseur, R. Sainidou, P. Rembert, A. C. Hladky-Hennion, N. Swinteck and P. A. Deymier,"Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal", Journal of Applied Physics, Vol. 116, No. 21, p. 214901. (2014).
    [38] S.-C. S. Lin, T. J. Huang, J.-H. Sun and T.-T. Wu,"Gradient-index phononic crystals", Physical Review B, Vol. 79, No. 9 (2009).
    [39] L.-Y. Wu and L.-W. Chen,"An acoustic bending waveguide designed by graded sonic crystals", Journal of Applied Physics, Vol. 110, No. 11, p. 114507. (2011).
    [40] T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin and T. J. Huang,"Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate", Applied Physics Letters, Vol. 98, No. 17, p. 171911. (2011).
    [41] C.-F. Wang, C.-N. Tsai, I.-L. Chang and L.-W. Chen, in ASME 2015 International Mechanical Engineering Congress and Exposition. (American Society of Mechanical Engineers, (2015)), pp. V013T016A023-V013T016A023.
    [42] S.-H. Kim,"Sound Focusing by Acoustic Luneburg Lens", arXiv preprint arXiv:1409.5489 (2014).
    [43] J. B. Pendry, D. Schurig and D. R. Smith,"Controlling electromagnetic fields", Science, Vol. 312, No. 5781, pp. 1780-1782. (2006).
    [44] G. W. Milton, M. Briane and J. R. Willis,"On cloaking for elasticity and physical equations with a transformation invariant form", New Journal of Physics, Vol. 8, No. 10, pp. 248-248. (2006).
    [45] H. Chen and C. T. Chan,"Acoustic cloaking in three dimensions using acoustic metamaterials", Applied Physics Letters, Vol. 91, No. 18, p. 183518. (2007).
    [46] S. A. Cummer, M. Rahm and D. Schurig,"Material parameters and vector scaling in transformation acoustics", New Journal of Physics, Vol. 10, No. 11, p. 115025. (2008).
    [47] R. C. Rumpf and J. Pazos,"Synthesis of spatially variant lattices", Optics Express, Vol. 20, No. 14, pp. 15263-15274. (2012).
    [48] R. C. Rumpf, J. Pazos, C. R. Garcia, L. Ochoa and R. Wicker,"3D PRINTED LATTICES WITH SPATIALLY VARIANT SELF-COLLIMATION", Progress in Electromagnetics Research-Pier, Vol. 139, pp. 1-14. (2013).
    [49] J. L. Digaum, J. J. Pazos, J. Chiles, J. D'Archangel, G. Padilla, A. Tatulian, R. C. Rumpf, S. Fathpour, G. D. Boreman and S. M. Kuebler,"Tight control of light beams in photonic crystals with spatially-variant lattice orientation", Opt Express, Vol. 22, No. 21, pp. 25788-25804. (2014).
    [50] R. C. Rumpf, J. J. Pazos, J. L. Digaum and S. M. Kuebler,"Spatially variant periodic structures in electromagnetics", Philos Trans A Math Phys Eng Sci, Vol. 373, No. 2049 (2015).
    [51] R. C. Rumpf, C. R. Garcia, H. H. Tsang, J. E. Padilla and M. D. Irwin,"ELECTROMAGNETIC ISOLATION OF A MICROSTRIP BY EMBEDDING IN A SPATIALLY VARIANT ANISOTROPIC METAMATERIAL", Progress in Electromagnetics Research-Pier, Vol. 142, pp. 243-260. (2013).
    [52] R. C. Rumpf,"Engineering the Dispersion and Anisotropy of Periodic Electromagnetic Structures", Solid State Physics, Vol. 66, pp. 213-300. (2015).
    [53] J. Achenbach, Wave propagation in elastic solids. Elsevier, (2012)
    [54] C.-N. Tsai and L.-W. Chen,"The manipulation of self-collimated beam in phononic crystals composed of orientated rectangular inclusions", Applied Physics A, Vol. 122, No. 7, pp. 1-8. (2016).
    [55] L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders,"Fundamentals of acoustics", Wiley-VCH, 4th Edition. Oxford, New York (1999).

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE