簡易檢索 / 詳目顯示

研究生: 賴思蓉
Lai, Ssu-Jung
論文名稱: χ-Al2O3粉體粒徑對其相轉換之影響
Particle Size Effects of χ-Al2O3 during Phase Transformation
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: 粒徑相轉換
外文關鍵詞: χ-Al2O3, κ-Al2O3, α-Al2O3
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Gibbsite (三水鋁石)由於其來源豐富價格低廉,一直是工業上生產氧化鋁的重要原料。Gibbsite一般會依循χ-Al2O3→κ-Al2O3→α-Al2O3的相變路徑,得到最終穩定相α-Al2O3。過渡相χ-Al2O3因結晶性不佳且不穩定,過去針對χ-Al2O3的研究及其工業上的應用非常少。近年來有研究指出藉由熱分解異丙醇鋁產生的χ-Al2O3可不經過κ-Al2O3直接相變為α-Al2O3,另有研究指出由Gibbsite而來的χ-Al2O3可能也有此現象,但缺乏直接的證據。本研究藉由珠磨技術 (perl mill) 縮減由Gibbsite相變而來χ-Al2O3的粒徑,再經由離心分級取得不同粒徑範圍的χ-Al2O3,觀察χ-Al2O3粒徑對後續相轉換的影響。研究結果顯示:(1) χ-Al2O3粒徑縮減使κ-Al2O3不易生成,α-Al2O3生成溫度降低。(2) χ-Al2O3粒徑縮減可使χ-Al2O3直接相變為α-Al2O3,且不受Gibbsite外型限制,有機會藉此產出粒狀奈米級α-Al2O3。

    Gibbsite is clearly one of the most important raw materials for preparing alumina powders in the industry because of the abundant content and the low price. In general, gibbsite transforms to the thermodynamically stable phase α-Al2O3 during the transformation path χ- →κ- →α-Al2O3. There were less researches and applications about transition phase χ-Al2O3 due to its poor crystallinity and stability.Recently, some researches indicate that nano-sized χ-Al2O3 prepared from thermal decomposition of aluminum isopropoxide (AIP) in inert organic solvents transformed directly to α-Al2O3 without the formation of κ-Al2O3 phase. Some researches indicate that gibbsite-derivedχ-Al2O3 powders may have the same phenomenon, but the powerful evidences are lacking.
    In this study, four categories of starting gibbsite-derivedχ-Al2O3 powders with different particle size distribution were obtained by milling and centrifuging techniques and were used to observe the size effects on the phase transformation. Two results are proposed. (1) The formation of κ-Al2O3 crystallites is more difficult and the temperature of α-Al2O3 formation is reduced with the size reduction of the χ-Al2O3. (2) Theχ- to α-Al2O3 phase transformation may occur once the size of χ-Al2O3. is reduced.

    中文摘要 III Abstract IV 誌謝 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1. 前言 1 1.2. 研究目的 2 第二章 理論基礎與前人研究 3 2.1. 相轉換 3 2.1.1. 熱力學 3 2.1.2. 動力學 4 2.1.2.1. 相轉換反應速率式 5 2.2. Gibbsite及其過渡相氧化鋁 7 2.2.1. Gibbsite可能存在的相轉換路徑 7 2.2.2. Gibbsite及過渡相氧化鋁的結構 8 2.2.3. 假型相轉換 16 2.3. 粒徑相轉換與相轉換發生的粒徑之關係 17 2.3.1. κ-Al2O3 →α-Al2O3反應有相變臨界晶徑 17 2.3.2. χ-Al2O3粒徑對相轉換之影響 17 2.3.2.1. 由Gibbsite而來的χ-Al2O3 17 2.3.2.2. 熱分解AIP得到的χ-Al2O3 17 第三章 實驗方法及步驟 19 3.1. 實驗構想與設計 19 3.2. 實驗步驟 19 3.2.1. 製備起始粉末 19 3.2.1.1. 由gibbsite獲得χ-Al2O3粉末 19 3.2.1.2. 製備起始χ-Al2O3分級粉末 19 3.2.2. 煆燒樣品製備 20 3.2.3. α-Al2O3生成活化能的觀察樣品製備 20 3.3. 起始χ-Al2O3特性 22 3.3.1. 粒徑分佈 22 3.3.2. TEM顯微觀察 22 3.3.3. XRD繞射分析 23 3.4. 特性分析 28 3.4.1. 粉末結晶相分析 28 3.4.2. 粒徑分佈量測 28 3.4.3. DTA熱差分析 28 3.4.4. κ-Al2O3及α-Al2O3生成量之定量分析 28 3.4.5. 顯微結構分析 29 第四章 結果與討論 32 4.1. 不同粒徑χ-Al2O3粉末之DTA熱差分析 32 4.2. κ-Al2O3與α-Al2O3的生成 34 4.2.1. κ-Al2O3及α-Al2O3的發生溫度 34 4.2.2. κ-Al2O3及α-Al2O3生成量變化 35 4.3. α-Al2O3生成活化能計算 45 4.4. χ-Al2O3→α-Al2O3的相變路徑 47 4.5. 煆燒粉顯微影像觀察 49 第五章 結論 51 參考文獻 52 Appendices 55 自述 61

    1. O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajarn, W. Tankulrungsank,”Phase transformation behavior of nanocrystalline χ-alumina powder obtained by thermal decomposition of AIP in inert organic solvent” J. Mater. Sci. , 39, 2417, 2004
    2. 林天鈞,前導物之粒徑對由Gibbsite獲得χ-Al2O3過程之影響,國立成功大學資源工程研究所,碩士論文,中華民國94年6月。
    3. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr. Fruip, R. R. McDonalod and A. N. Syverud, “JANAF Thermal Chemical Dynamical Tables,” 3rd Ed. Am. Chem. Soc., 1985.
    4. A. Putnis and J. D. C. McConnell, Principles of Mineral Behaviour, Elsevier, New York, 1980
    5. A. Putnis, Introduction to Mineral Sciences, Cambridge University Press, New York, 1992
    6. C. H. Bamford and C. F. H. Tipper, Reactions in the Solid State, Comprehensive Chemical Kinetics, 22, Else. Sci. Pub. Co., New York, 1980.
    7. H.G. Wang, H. Herman and X. Liu, “Activation energy for crystal growth using isothermal and continuous heating processes.”J. Mater. Sci., 25, 2339, 1990.
    8. I. Levin, D. Brandon, “Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc., 81, 1995, 1998.
    9. R. B. Bagwell, G. L. Messing, and P. R. Howell, ”The Formation of α-Al2O3 From θ-Al2O3:The Relevance of a ’Critical Size’ and : Diffusional Nucleation or ’Synchro-Shear’? ,” J. Mater. Sci., 36, 1833, 2001.
    10. T. G. Peason, The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1995.
    11. J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, “The Dehydration of Alumina Hydrates,” Proc. Kon. Ned. Akad. Werensch., Amsterdam, B57, 170, 1954.
    12. R. Tertian and D. Pape, “Thermal and Hydrothermal Transformations of Alumina,” J. Chim. Phys., 55, 341, 1958.
    13. G. W. Brindley and J. O. Choe, “The Reaction Series, Gibbsite→Chi Alumina→Kappa Alumina →Corundum,” The Am. Mineral., 46, 771, 1961.
    14. J. F. Brown, D. Clark, and W. W. Elliott, “Thermal Decomposition of the Alumina Trihydrate, Gibbsite,” J. Chem. Soc. (London), 84, 1953.
    15. 黃啟祥、林江財,陶瓷技術手冊(下),P. 683,中華民國產業科技發展協進會,與中華民國粉末冶金協會出版。中華民國83年7月。
    16. K. Wefers and G. M. Bell, Oxides and Hydroxides of Aluminum, Alcoa Research Lab., Technical Paper No.19, 1972.
    17. K. Wefers, “Nomenclature, Preparation, and Properties of Aluminum Oxides, Oxide Hydroxides, and Trihydroxides,” in Alumina Chemicals, L. D. Hart Ed., Am. Ceram. Soc., Ohio, 1990.
    18. B. Clippens and J. J. Steggerda, “Active Alumina” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171, 1970.
    19. J. Rouquerol, F. Rouquerol, and M. Ganteaume, “Thermal Decomposition of Gibbsite Under Low Pressures I. Formation of the Boehmitic Phase,” J. Catal., 36, 99, 1975.
    20. J. Rouquerol, F. Rouquerol, and M. Ganteaume, “Thermal Decomposition of Gibbsite Under Low Pressures II. Formation of Microporous Alumina,” J. Catal., 57, 222, 1979.
    21. H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal Transformations of Aluminas and Their Hydrates,” J. Phys. Chem., 57,946, 1953.
    22. H. Saalfeld, “The Structure of Gibbsite and the Intermediate Products of Its Dehydration,” N. Jb. Miner. Abh., 95, 1-87, 1960.
    23. R. Naumann, K. Kohnke, J. Paulik, and F. Paulik, “Kinetics and Mechanism of the Dehydration of Hydrargillites. Part II,” Thermochim. Acta, 64, 12, 1983.
    24. P. Liu and J. Skogsmo, “Space-Group Determination and Structure Model for κ-Al2O3 by Convergent-Beam Electron Diffraction(CBED),” Acta Cryst. B47, 425, 1991.
    25. H. L. Gross and W. Mader, “On the Crystal Structure of κ-Alumina,” Chem. Commun., 55, 1997..
    26. Y. Yourdshahyan, C. Ruberto, M. Halvarsson, L. Bengtsson, V. Langer, and B. I. Lundqvist, “Theoretical Structure Determination of a Complex Material: -Al2O3,” J. Am. Ceram. Soc., 82, 1365, 1999.
    27. Y. Chaing, D. P. Birnie Ⅲ, and W. D. Kingery, Physical Ceramics – Principles for Ceramic Science and Engineering, Wiley, New York, 1997.
    28. C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, 21st Ed. John Wiley & Sons, New York , 1993.
    29. H. Achenbach, “Thermal Decomposition of Synthetic Hydrargillite (Gibbsite),” Chem. Esre.,6, 307, 1931.
    30. V. R. Damerell. F. Hovorka, and W. E. White,”Surface Chemistry of Hyderate. II. Deconposition Without Lattice Rearrangements,” J. Phys. Chem. , 36, 1255, 1932.
    31. H. Z. Zhang, J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania,” J. Mater. Chem., 8, 2073, 1998.
    32. A. A. Gribb , J. F. Banfield, “Particle Size Effect on Transformation Kinetic and Phase Stability in Nanocrystakkine TiO2,” Am. Miner. , 82, 717, 1997
    33. 黃紘筠,以gibbsite為前導物觀察κ-→α-Al2O3相轉換晶徑變化與粒體發育現象,國立成功大學資源工程研究所,碩士論文,中華民國93年7月。

    下載圖示 校內:2009-08-23公開
    校外:2010-08-23公開
    QR CODE