簡易檢索 / 詳目顯示

研究生: 梁益榕
Liang, Yih-Rong
論文名稱: 應用支援向量機於無人機即時健康診斷系統
Application of Support Vector Machine for Real-Time Health Diagnosis System for Drones
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 多軸無人機健康診斷支援向量機機器學習滑動視窗
外文關鍵詞: UAV, Health Diagnosis, SVM, Machine Learning, Window Sliding Technique
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無人機產業蓬勃發展,但因無人機使用者對於飛行安全的安全意識不高,導致意外頻傳,因此無人機的即時健康診斷將會是影響未來無人機發展的重要關鍵之一。本研究以即時診斷無人機的健康狀態為目標,即時診斷無人機目前為無失效或是具有潛在失效的狀態,具有潛在失效的定義為無人機至少存在馬達底座螺絲鬆脫、螺旋槳破損和螺旋槳安裝螺絲鬆脫這三種的損傷狀態中任何一種,且損傷程度為可被人發現。首先收集無人機於各種不同健康狀態的飛行振動數據,並對其分別做均方根、標準差和快速傅立葉轉換等時域或頻域特徵擷取,透過支援向量機機器學習演算法建立健康診斷模型,最終再透過滑動視窗、Mavlink通訊協議等方法,完整建立無人機即時健康診斷系統,並成功完成實際測試。
    健康診斷模型於預測飛行環境相同的測試資料時,對於具有潛在損傷有著92%的招回率,但對於飛行環境較不同的新測試資料時,預測結果的招回率皆有些微下降,但在應用滑動視窗法後,可以使無失效狀態的招回率提升至94%,具有潛在損傷狀態則為49%;應用於實際任務情境時,不會過於頻繁的發送錯誤診斷,同時又能辨識出無人機目前具有潛在損傷狀態。

    In recent years, the development of the drone industry is booming. But because users don’t have enough consciousness of flight safety, so lots of accident happened. Therefore, the real-time health diagnosis system for drones will be a key factor in the development of the drone industry. This study dedicates to build a real-time diagnosis system for drones. Drones can be real-time diagnosed as nonfailure status or having potential failure status. The definition of having potential failure status is that drone have at least one of three fault conditions which are loosening of motor mount, propeller broken and loosening of propeller. This study uses the vibration signal of different health status and extract the time domain or frequency domain features with feature engineering methods. Next, Support Vector Machine(SVM) model can be trained by using those features. During the model training, feature selection and hyper-parameter tuning method have been applied to avoid model overfitting. Then, this study integrates the model and Window Sliding Technique and Mavlink to the real-time health diagnosis system. And finished the actual experiment successfully.
    When model is predicting the data which have the similar flight condition with training data, the recall of prediction of having potential failure status is 92%. But when model is predicting new data, the recall of prediction both nonfailure status and having potential failure status reduce slightly. After Window Sliding Technique has been applied, the recall of prediction nonfailure status is 94% and having potential failure status is 49%. When system running in the real mission, this setup can diagnose that drone have potential failure status, and won’t send wrong diagnosis results too often.

    中文摘要 I 英文摘要 II 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 無人機損傷種類 2 1.2.2 無人機損傷特徵蒐集與分析 3 1.2.3 無人機診斷系統 6 1.2.4 文獻回顧總結 7 1.3 研究動機與目的 9 1.4 研究方法與流程 9 1.5 論文架構 11 第二章 特徵工程與演算法理論 13 2.1 特徵工程 13 2.1.1 時域特徵工程 13 2.1.2 頻域特徵工程 16 2.1.3 特徵選擇 16 2.2 支援向量機理論 17 2.2.1 支援向量機演算法參數 19 2.3 混淆矩陣 21 2.4 滑動視窗法 22 第三章 無人機振動訊號蒐集與處理 24 3.1 無人機系統(UAV) 24 3.1.1 六旋翼無人機 24 3.1.2 飛行控制器 26 3.1.3 GPS模組 27 3.1.4 無人機遙控設備 28 3.1.5 無人載具地面站 29 3.1.6 MAVLink 30 3.2 嵌入式電腦系統(Companion Computer System) 30 3.2.1 Raspberry Pi 30 3.2.2 慣性測量單元 32 3.3 健康狀態之定義 33 3.3.1 潛在失效 33 3.3.2 無失效 36 3.4 飛行實驗 36 3.4.1 飛行環境與實驗條件 36 3.4.2 飛行實驗流程 37 3.5 特徵擷取 38 3.5.1 資料前處理 38 3.5.2 特徵處理 39 第四章 模型建立與分析 41 4.1 交叉驗證 43 4.2 特徵選擇 44 4.3 SVM模型參數選擇 46 4.4 SVM模型結果 47 第五章 實驗結果與分析 49 5.1 全新資料預測 49 5.2 個別損傷評估 50 5.3 滑動視窗應用 52 5.4 無人機即時健康診斷系統 55 5.5 實際飛行測試 56 5.5.1 無失效狀態測試 57 5.5.2 具有潛在失效狀態測試 58 第六章 結論與未來工作 60 6.1 結論 60 6.2 未來工作 61 參考文獻 63

    [1] Drone & FAA Modernization Reform of 2012, Public Law 112-95, sec 331(8).
    [2] Gorucu, S, Y. Ampatzidis (2021), “Drone Injuries and Safety Recommendations”, UF/IFAS Department of Agricultural and Biological Engineering, vol 2021, No 3.
    [3] Kandaswamy, G, P. Balamuralidhar (2017), “Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles,” World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, Vol.11, No.5, pp.1080-1089.
    [4] Yap, Y. K (2014), “Structural Health Monitoring for Unmanned Aerial Systems,” Technical Report No. UCB/EECS-2014-70. Electrical Engineering and Computer Sciences University of California at Berkeley.
    [5] 蔡松廷(2020),「應用小波散射與機器學習於四軸無人機飛行數據分析之診斷分類系統」,國立成功大學民航研究所碩士論文。
    [6] Ge, C. F, D. Kyle, A. S. Mukul, L. Yuan and L. X. Lu (2021). "Development of a Drone’s Vibration, Shock, and Atmospheric Profiles" Applied Sciences, 11(11), p 5176.
    [7] 鄭德力(2019),「應用自組織映射圖於四軸無人機飛行數據分析之診斷系統」,國立成功大學航空太空工程研究所碩士論文。
    [8] Bronz, M, E. Baskaya, D. Delahaye, S. Puechmorel (2020), “Real-time Fault Detection on Small Fixed-Wing UAVs using Machine Learning”, DASC 2020 AIAA/IEEE 39th Digital Avionics Systems Conference, October, pp.1~10.
    [9] Bondyra, A, P. Gasior, S. Gardecki and A. Kasiński (2017), "Fault diagnosis and condition monitoring of UAV rotor using signal processing," 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp.233~238.
    [10] Lai, Y, B. Yang, X. Jiang, F. Jia, N. Li, A. K. Nandi (2020), “Applications of machine learning to machine fault diagnosis: A review and roadmap”, Mechanical Systems and Signal Processing, 138, 106587.
    [11] Tahir, M. M, S. Badshah, A. Hussain, M. A. Khattak (2018),” Extracting accurate time domain features from vibration signals for reliable classification of bearing faults”, International Journal of Advanced and Applied Sciences, 5(1), pp.156~163.
    [12] Richman, J. S, J. R. Moorman (2000), “Physiological time-series analysis using approximate entropy and sample entropy.” American journal of physiology. Heart and circulatory physiology, 278(6).
    [13] Cooley, J. W, J. W. Tukey (1965), “An algorithm for the machine calculation of complex Fourier series.” Mathematics of Computation, 19, pp.297~301.
    [14] Cortes, C, V. Vapnik (1995), “Support-vector networks, ” Mach Learn, 20, pp.273~297.
    [15] Gunn, S. R (1998), “Support vector machines for classification and regression ,” ISIS technical report, 14(1), pp.5~16.
    [16] Baghaee, H. R, D. Mlakić, S. Nikolovski and T. Dragicević (2020), "Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, September, pp.2385-2403.
    [17] Raza, A, A. Dhakal, S. Honkanen, R. Baets (2015), “Glucose sensing using photonics waveguide based evanescent Raman spectroscopy”, University of Ghent, Ughent, Belgium.
    [18] Cramer, H(1959), Probability and Statistics: The Harald Cramér Volume, Almqvist & Wiksell.
    [19] 林軒田,「機器學習技法」,https://www.csie.ntu.edu.tw/~htlin/mooc/
    [20] https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/
    [21] https://www.hobby-wing.com/tl96020-5008-motor.html
    [22] https://docs.px4.io/master/en/flight_controller/cubepilot_cube_orange.html
    [23] https://docs.px4.io/v1.9.0/en/gps_compass/rtk_gps_hex_here2.html
    [24] Mission Planner, http://ardupilot.org/planner/
    [25] https://vitalflux.com/k-fold-cross-validation-python-example/

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE