| 研究生: |
高明聖 Kao, Ming-Sheng |
|---|---|
| 論文名稱: |
應用DQEM離散法及EDQ時間積分法於求解具剪變形之樑的動態反應 |
| 指導教授: |
陳長鈕
Chen, Chang-New |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 延伸數值積分表示微分法 |
| 外文關鍵詞: | DQEM, EDQ |
| 相關次數: | 點閱:107 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來DQEM(數值積分表示微分元素法)在陳長鈕老師的開發研究下已成為一種重要的數值結構分析技巧,而且能有系統的編寫成求解的電腦程式。
DQEM(數值積分表示微分元素法)在結構分析上具有高度的數值耦合特性,在分析時所需選取的網格分割點也較少,不但可以降低運算過程中所耗費的時間,並可得到較好的收斂速度和準確性。
本篇論文將應用DQEM(數值積分表示微分元素法)離散法將剪變形樑之統御方程式離散化,並考慮元素內部的連接條件和邊界條件,經總體組合後再使用EDQ(延伸數值積分表示微分法)時間積分法求解具剪變形之樑的動態反應,並應用於數個不同的實例分析以驗證此法的精確性。
Abstract
In recent years, the differential quadrature element method(DQEM) proposed by Dr. C.N. Chen has been an important method for analyzing the structure problems. The numerical procedure of this method can systematically implemented into a computer program.
The coupling of solutions at discrete points is strong by using the differential quadrature element method. Thus, accurate and convergence can be assured by using less discrete points and less arithmetic operations which can reduce the computer CPU time required.
In this work, the DQ discretization of shear deformable bean is carried out on an element-basis. The discretized governing differential equations defined on the elements, transition conditions on inter-element boundaries and boundary conditions are assembled to obtain an overall algebric systems. Then, using the EDQ time integration algorithm to solve the dis-crete equations of motion of structural dynamics problems. Sample problems are analyzed, and prove that the EDQ analysis model is excellent.
參考文獻
【1】R.E. Bellman and J. Casti “Differential Quadrature and Long-term Integration”,Journal of Mathematical Analysis and Applications,34, 235-238, 1971.
【2】F. Civan and C. M. Sliepcevich “Differential Quadratural to Transport Processes”, J. Math. Anal. Appl. ,93 , 206-221,1983.
【3】S.K. Jang , C.W. Bert and A.G. Striz “Application of Differential Quadrature to Static Analysis of Structural Components”, Int. J. Numer. Methods eng. ,28, 561-577,1989.
【4】J.O. Mingle, “ The Method of Differential Quadrature for Transient Nonlinear Diffusion ”,J. Math. Anal.,60,569-599,1977.
【5】F. Civan and C. M. Sliepcevich “Differential Quadratural for Multi-dimentional Problems”, J. Math. Anal. Appl. 101, 423-443, 1984.
【6】Chen CN. “A Differential Quadrature Element Method”, Proc. 1stInternational Conference on Computational Engineering and Computer Simulation,Changsha, China, 25-34,1995.
【7】Chen CN. “Generalization of Differential Quadrature Discretization" ,Numerical Algorithms,Vol.22,167-182,1999.
【8】Chen CN. “A Generalized Differential Quadrature Element Method”, Computer Methods in Applied Mechanics and Engineering,Vol.188, 553-556,2000.
【9】Chen CN. “Analysis of 3-D Frame Problems by DQEM Using EDQ”, Advances in Engineering Software 2000, accepted for publication.
【10】Chen CN. “Differential Quadrature Element Analysis Using Extended Differential Quadrature”, Computer& Mathematics with Appl. ,Vol. 39,65-79,1999.
【11】Chen CN. “ The Warping Torsion Bar Model of the Differential Quadrature Element Method”,Computer & Structures,Vol.66,249-257,1998.
【12】Chen CN. “ A Differential Quadrature Finite Element Method”,Applied Mechanics in the Americas (eds D. Pamplona et al.) , American Academy of Mechanics,Vol.6,309-312,1998.
【13】Chen CN. “The Two-dimensional Frame Model of the Differential Quadrarure Element Method”, Computers & Structures.
【14】林育男 “數值積分示微分元素法的研究”,國立成功大學造船船舶機械工程研究所碩士論文,1995.
【15】宋治勇 “數值積分示微分元素法振動分析模式”,國立成功大學造船暨船舶機械工程研究所碩士論文,1996.
【16】黃志偉 “數值積分示微分元素法剪變形變斷面樑分析模式”,國立成功大學造船暨船舶機械工程研究所碩士論文,1997.
【17】謝明錡 “數值積分示微分元素法具彈性基座樑分析模式”,國立成功大學造船暨船舶機械工程研究所碩士論文,1997.
【18】李盈賢 “應用DQEM分析彈性基座之變斷面剪變形樑” ,國立成功大學造船暨船舶機械工程研究所碩士論文,2001.
【19】G. R. Cowper , “ The Shear Coefficient in Timoshenko’s Beam ”, Journal of Applied Mechanics , 335-340, June,1966.
【20】Oktay Ural “有限元素元素法導論” 科技圖書股份有限公司.
【21】J.B.Carr, “The Effect of Shear Flexibility and Rotatory Inertia on the Natural Frequencies of Uniform Beams”, The Aeronatutical Quarterly,Vol.21,79-90,1970.
【22】Chang Shu and Bryan E. Richard “Application of Generalized Differential Quadrature to solve Two-Dimensional Incompressible Navier-Stokes Equations”, International Journal For Numerical Method in Fluids,Vol. 15,791-798,1992.