簡易檢索 / 詳目顯示

研究生: 陳揚
Chen, Yang
論文名稱: 多重材料拓樸最佳化於3D列印自適性撓性夾爪設計之研究
Multi-Material Topology Optimization for Design of a 3D Printed Adaptive Compliant Gripper
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 撓性夾爪拓樸最佳化多重材料設計3D列印撓性機構
外文關鍵詞: compliant gripper, topology optimization, multi-material design, 3D printing, compliant mechanism
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套多重材料撓性機構拓樸最佳化方法與一個複合目標函數,並將此方法應用於自適性撓性夾爪之設計。藉由3D列印填充密度與等效材料性質之關係,能以一般低成本的FDM(fused deposition modeling) 3D列印設備製造出一體成型且近似雙材料效能之自適性撓性夾爪。在拓樸最佳化方面,本研究於濾化演算法中加入臨界投影法以減少灰階元素,再利用穩健性拓樸最佳化之概念改寫問題方程式,避免撓性機構出現單一節點連接之結構。本研究另外提出一個可用於雙輸出自適性撓性夾爪設計之複合目標函數,此目標函數結合交互位能與應變能,以交互位能描述第一輸出端(夾取面末端)傳遞位移之能力,而應變能則描述第二輸出端(夾取面中點)承受反作用力之能力,使夾爪具備適應目標物外形之自適性。本研究並對3D列印之軟性材料TPE(thermoplastic elastomer)進行拉伸試驗,測試TPE於不同填充密度下之應力應變關係,獲得其線彈性與超彈性材料模型。本研究提出一個多重材料撓性機構設計流程,此方法能設計出具備較佳目標函數之雙材料撓性機構,也將此方法應用於反向機構、夾鉗機構與自適性撓性夾爪之設計。本研究最終挑選出一組單材料(填充密度50%)與雙材料(填充密度30%與100%)之自適性撓性夾爪進行試作驗證,測試夾爪之輸入力量、輸出位移與自適性,並將其安裝於六軸機械手臂進行實物夾取。實驗結果顯示兩種設計皆具備良好之自適性,能夾取不同尺寸、形狀與易損傷之目標物,包含雞蛋、番茄與玻璃杯等物品。相較於單材料設計夾爪,雙材料設計夾爪末端之輸出位移平均可提升7.59%,且驅動所需之輸入力量平均可減少41.55%。本研究利用不同3D列印填充密度所製作的近似雙材料效能之自適性撓性夾爪,其最大負載重量為2.4kg,在達成自適性夾取的情況下能夾取尺寸小於80mm之未知目標物。

    This study presents a multi-material topology optimization method and a multi-criteria ob-jective function for design of an adaptive compliant gripper. Based on the fact that different infill densities in 3D printing leads to prototypes with different equivalent mechanical properties, a multi-material design can be approximated by varying the values of infill den-sities in 3D printing of a prototype, which enables the multi-material designs can be proto-typed using general low-cost FDM (fused deposition modeling) 3D printing machines. The compliant gripper is prototyped by 3D printing using thermoplastic elastomer (TPE); the relations between infill densities and mechanical properties (including linear elastic and hyperelastic material parameters) of the 3D printed TPE are identified based on tensile test results. The optimal designs of bi-material compliant mechanisms including inverter mech-anism, crunching mechanism, and adaptive compliant gripper are presented using the pro-posed method, which can lead to better objective function values than their original sin-gle-material designs. In addition, one bi-material gripper design (with infill densities of 30 and 100%), and one single-material gripper design (with an infill density of 50%) are pro-totyped then installed on a six-axis industrial robot to perform grasping tests. Experimental results show both designs can be used in adaptive grasping of size-varied delicate objects including egg, tomato, and glass cups. The bi-material gripper design can yield a larger output displacement at the fingertip (7.59% in average) with a smaller input force (41.55% in average) comparing to the single-material gripper design. The identified maximum pay-load of the prototyped bi-material gripper is 2.4kg, whereas the maximum allowable object size for a successful adaptive grasping is 80mm.

    摘要 i ABSTRACT ii 誌謝 xvii 目錄 xviii 表目錄 xxi 圖目錄 xxii 符號說明 xxv 第一章 緒論 1 1-1 撓性夾爪介紹 1 1-2 熔融沉積成型積層製造技術介紹 4 1-3 結構最佳化文獻回顧 5 1-3-1 拓樸最佳化 7 1-3-2 SIMP方法拓樸最佳化 9 1-3-3 多重材料拓樸最佳化 11 1-4 研究目的 12 1-5 本文架構 13 第二章 多重材料拓樸最佳化理論 15 2-1 前言 15 2-2 拓樸最佳化流程 15 2-3 設計區間、設計變數與有限元素分析 16 2-4 濾化演算法 18 2-5 穩健性拓樸最佳化 22 2-6 MMA理論 25 2-7 收斂準則 28 2-7-1 單材料設計 29 2-7-2 雙材料設計 30 2-8 單一目標函數:交互位能 31 2-8-1 單材料設計之靈敏度分析 33 2-8-2 雙材料設計之靈敏度分析 35 2-9 複合目標函數:交互位能與應變能 36 2-9-1 單材料設計之靈敏度分析 39 2-9-2 雙材料設計之靈敏度分析 41 2-10 多重材料撓性機構拓樸最佳化流程 42 2-11 本章小結 44 第三章 3D列印材料模型建立 45 3-1 前言 45 3-2 材料拉伸實驗 45 3-3 線彈性材料模型 48 3-4 超彈性材料模型 49 3-5 模擬與驗證 52 3-6 本章小結 54 第四章 多重材料撓性機構拓樸最佳化範例 55 4-1 前言 55 4-2 多重材料撓性機構設計流程 55 4-3 設計指標、材料參數與目標函數 57 4-4 範例一:反向機構(inverter mechanism) 59 4-5 範例二:夾鉗機構(crunching mechanism) 67 4-6 本章小結 74 第五章 自適性撓性夾爪拓樸最佳化設計與分析 75 5-1 前言 75 5-2 自適性撓性夾爪拓樸最佳化設計 75 5-2-1 設計區間 76 5-2-2 參數測試 79 5-2-3 拓樸最佳化設計結果 81 5-3 拓樸最佳化結果分析 84 5-4 本章小結 88 第六章 自適性撓性夾爪試做與驗證 89 6-1 前言 89 6-2 自適性撓性夾爪試做與測試 89 6-2-1 輸入力量測試 91 6-2-2 輸出位移測試 93 6-2-3 自適性測試 96 6-3 實物夾取測試 98 6-4 夾取範圍與負載測試 100 6-5 本章小結 105 第七章 結論與建議 106 7-1 結論 106 7-2 建議 108 參考文獻 110

    [1] O. Sigmund, "Manufacturing tolerant topology optimization," Acta Mechanica Sinica, vol. 25, no. 2, pp. 227-239, 2009.
    [2] Y. Lu, "Industry 4.0: A survey on technologies, applications and open research issues," Journal of Industrial Information Integration, vol. 6, pp. 1-10, 2017.
    [3] ROBOTIQ公司網頁. https://robotiq.com
    [4] L. L. Howell, "Compliant mechanisms," in 21st Century Kinematics: Springer, pp. 189-216, 2013.
    [5] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, "Soft robotic grippers," Advanced Materials, vol. 30, no. 29, p. 1707035, 2018.
    [6] SRT公司網頁. http://softrobottech.com
    [7] SOFT ROBOTICS公司網頁. https://www.softroboticsinc.com
    [8] PIAB公司網頁. https://www.piab.com
    [9] FESTO公司網頁. https://www.festo.com
    [10] EMPIRE ROBOTICS公司網頁. https://www.empirerobotics.com
    [11] C. M. Gosselin, "Adaptive robotic mechanical systems: A design paradigm," ASME Journal of Mechanical Design, vol. 128, no. 1, pp. 192-198, 2006.
    [12] L. Birglen and T. Schlicht, "A statistical review of industrial robotic grippers," Robotics and Computer-Integrated Manufacturing, vol. 49, pp. 88-97, 2018.
    [13] ISO/ASTM52910-18 Additive manufacturing — Design — Requirements, guidelines and recommendations, ASTM International, West Conshohocken, PA, 2018.
    [14] I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies. Springer, 2014.
    [15] L. Baich, G. Manogharan, and H. Marie, "Study of infill print design on production cost-time of 3D printed ABS parts," International Journal of Rapid Manufacturing, vol. 5, no. 3-4, pp. 308-319, 2015.
    [16] C. Alvarez, L. Kenny, C. Lagos, F. Rodrigo, and M. Aizpun, "Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts," Ingeniería e Investigación, vol. 36, no. 3, pp. 110-116, 2016.
    [17] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, and A. Conejero, "Effect of infill parameters on tensile mechanical behavior in desktop 3D printing," 3D printing and additive manufacturing, vol. 3, no. 3, pp. 183-192, 2016.
    [18] S. Perai, "Methodology of compliant mechanisms and its current developments in applications: a review," American Journal of Applied Sciences, vol. 4, no. 3, pp. 160-167, 2007.
    [19] O. Sigmund, "Topology optimization: a tool for the tailoring of structures and materials," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1765, pp. 211-227, 2000.
    [20] L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of compliant mechanisms. John Wiley & Sons, 2013.
    [21] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media, 2013.
    [22] 邱震華, 拓樸與尺寸最佳化於自適性撓性夾爪機械利益最大化設計之研究, 國立成功大學機械工程學系碩士學位論文, 2016.
    [23] M. P. Bendsoe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer Methods in Applied Mechanics and Engineering, vol. 71, no. 2, pp. 197-224, 1988.
    [24] M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of applied mechanics, vol. 69, no. 9-10, pp. 635-654, 1999.
    [25] M. Y. Wang, X. Wang, and D. Guo, "A level set method for structural topology optimization," Computer methods in applied mechanics and engineering, vol. 192, no. 1-2, pp. 227-246, 2003.
    [26] G. Allaire, F. Jouve, and A.-M. Toader, "Structural optimization using sensitivity analysis and a level-set method," Journal of computational physics, vol. 194, no. 1, pp. 363-393, 2004.
    [27] O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and multidisciplinary optimization, vol. 21, no. 2, pp. 120-127, 2001.
    [28] O. Sigmund, "On the design of compliant mechanisms using topology optimization," Journal of Structural Mechanics, vol. 25, no. 4, pp. 493-524, 1997.
    [29] X. Huang and M. Xie, Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons, 2010.
    [30] K. Svanberg, "The method of moving asymptotes—a new method for structural optimization," International journal for numerical methods in engineering, vol. 24, no. 2, pp. 359-373, 1987.
    [31] S. Canfield and M. Frecker, "Topology optimization of compliant mechanical amplifiers for piezoelectric actuators," Structural and Multidisciplinary Optimization, vol. 20, no. 4, pp. 269-279, 2000.
    [32] S. Chen, M. Y. Wang, and A. Q. Liu, "Shape feature control in structural topology optimization," Computer-Aided Design, vol. 40, no. 9, pp. 951-962, 2008.
    [33] M. Y. Wang, "Mechanical and geometric advantages in compliant mechanism optimization," Frontiers of Mechanical Engineering in China, vol. 4, no. 3, pp. 229-241, 2009.
    [34] Z. Luo, L. Tong, M. Y. Wang, and S. Wang, "Shape and topology optimization of compliant mechanisms using a parameterization level set method," Journal of Computational Physics, vol. 227, no. 1, pp. 680-705, 2007.
    [35] M. I. Frecker, G. Ananthasuresh, S. Nishiwaki, N. Kikuchi, and S. Kota, "Topological synthesis of compliant mechanisms using multi-criteria optimization," ASME Journal of Mechanical Design, vol. 119, no. 2, pp. 238-245, 1997.
    [36] S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, "Topology optimization of compliant mechanisms using the homogenization method," International journal for numerical methods in engineering, vol. 42, no. 3, pp. 535-559, 1998.
    [37] R. Ansola, E. Veguería, A. Maturana, and J. Canales, "3D compliant mechanisms synthesis by a finite element addition procedure," Finite Elements in Analysis and Design, vol. 46, no. 9, pp. 760-769, 2010.
    [38] K. Liu and A. Tovar, "An efficient 3D topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 50, no. 6, pp. 1175-1196, 2014.
    [39] T. Buhl, C. B. Pedersen, and O. Sigmund, "Stiffness design of geometrically nonlinear structures using topology optimization," Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 93-104, 2000.
    [40] D. Jung and H. C. Gea, "Topology optimization of nonlinear structures," Finite Elements in Analysis and Design, vol. 40, no. 11, pp. 1417-1427, 2004.
    [41] Y. Luo, M. Y. Wang, and Z. Kang, "Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique," Computer methods in applied mechanics and engineering, vol. 286, pp. 422-441, 2015.
    [42] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4-5, pp. 401-424, 2007.
    [43] O. Sigmund, "Design of material structures using topology optimization," PhD thesis, Department of Solid Mechanics, Technical University of Denmark, 1994.
    [44] T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Computer methods in applied mechanics and engineering, vol. 190, no. 26-27, pp. 3443-3459, 2001.
    [45] J. K. Guest, J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions," International journal for numerical methods in engineering, vol. 61, no. 2, pp. 238-254, 2004.
    [46] S. Xu, Y. Cai, and G. Cheng, "Volume preserving nonlinear density filter based on heaviside functions," Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495-505, 2010.
    [47] F. Wang, B. S. Lazarov, and O. Sigmund, "On projection methods, convergence and robust formulations in topology optimization," Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767-784, 2011.
    [48] O. Sigmund and S. Torquato, "Design of materials with extreme thermal expansion using a three-phase topology optimization method," Journal of the Mechanics and Physics of Solids, vol. 45, no. 6, pp. 1037-1067, 1997.
    [49] O. Sigmund, "Design of multiphysics actuators using topology optimization–Part II: Two-material structures," Computer methods in applied mechanics and engineering, vol. 190, no. 49-50, pp. 6605-6627, 2001.
    [50] M. Y. Wang and X. Wang, "“Color” level sets: a multi-phase method for structural topology optimization with multiple materials," Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 6-8, pp. 469-496, 2004.
    [51] M. Y. Wang, S. Chen, X. Wang, and Y. Mei, "Design of multimaterial compliant mechanisms using level-set methods," Journal of mechanical design, vol. 127, no. 5, pp. 941-956, 2005.
    [52] Z. Luo, L. Tong, J. Luo, P. Wei, and M. Y. Wang, "Design of piezoelectric actuators using a multiphase level set method of piecewise constants," Journal of Computational Physics, vol. 228, no. 7, pp. 2643-2659, 2009.
    [53] A. T. Gaynor, N. A. Meisel, C. B. Williams, and J. K. Guest, "Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing," Journal of Manufacturing Science and Engineering, vol. 136, no. 6, p. 061015, 2014.
    [54] S. Chu, L. Gao, M. Xiao, Z. Luo, and H. Li, "Stress‐based multi‐material topology optimization of compliant mechanisms," International Journal for Numerical Methods in Engineering, vol. 113, no. 7, pp. 1021-1044, 2018.
    [55] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, "Efficient topology optimization in MATLAB using 88 lines of code," Structural and Multidisciplinary Optimization, vol. 43, no. 1, pp. 1-16, 2011.
    [56] J. K. Guest, A. Asadpoure, and S.-H. Ha, "Eliminating beta-continuation from heaviside projection and density filter algorithms," Structural and Multidisciplinary Optimization, vol. 44, no. 4, pp. 443-453, 2011.
    [57] R. T. Shield and W. Prager, "Optimal structural design for given deflection," Journal of Applied Mathematics and Physics (Zeitschrift für angewandte Mathematik und Physik), vol. 21, no. 4, pp. 513-523, 1970.
    [58] CNS 3553:2016 硫化或熱塑性橡膠-拉伸應力-應變性質之測定, 中華民國國家標準, 2016.
    [59] O. H. Yeoh, "Some forms of the strain energy function for rubber," Rubber Chemistry and technology, vol. 66, no. 5, pp. 754-771, 1993.
    [60] A. Wineman, "Some results for generalized neo-Hookean elastic materials," International Journal of Non-Linear Mechanics, vol. 40, no. 2-3, pp. 271-279, 2005.
    [61] B. Kim, S. B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, and S. H. Park, "A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber," International Journal of Precision Engineering and Manufacturing, vol. 13, no. 5, pp. 759-764, 2012.
    [62] R. W. Ogden, "Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, no. 1567, pp. 565-584, 1972.
    [63] R. W. Ogden, G. Saccomandi, and I. Sgura, "Fitting hyperelastic models to experimental data," Computational Mechanics, vol. 34, no. 6, pp. 484-502, 2004.
    [64] Z. Wang, Y. Torigoe, and S. Hirai, "A prestressed soft gripper: design, modeling, fabrication, and tests for food handling," IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1909-1916, 2017.
    [65] H. Zhang, A. S. Kumar, F. Chen, J. Y. Fuh, and M. Y. Wang, "Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 120-131, 2018.
    [66] Z. Wang, K. Or, and S. Hirai, "A dual-mode soft gripper for food packaging," Robotics and Autonomous Systems, vol. 125, p. 103427, 2020.
    [67] C.-H. Liu, T.-L. Chen, C.-H. Chiu, M.-C. Hsu, Y. Chen, T.-Y. Pai, W.-G. Peng, and Y.-P. Chiang, "Optimal design of a soft robotic gripper for grasping unknown objects," Soft robotics, vol. 5, no. 4, pp. 452-465, 2018.
    [68] C.-H. Liu, C.-H. Chiu, T.-L. Chen, T.-Y. Pai, M.-C. Hsu, and Y. Chen, "Topology optimization and prototype of a three-dimensional printed compliant finger for grasping vulnerable objects with size and shape variations," Journal of Mechanisms and Robotics, vol. 10, no. 4, 2018.
    [69] C.-H. Liu, C.-H. Chiu, M.-C. Hsu, Y. Chen, and Y.-P. Chiang, "Topology and size–shape optimization of an adaptive compliant gripper with high mechanical advantage for grasping irregular objects," Robotica, vol. 37, no. 8, pp. 1383-1400, 2019.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE