| 研究生: |
陳道星 Chen, Tao-Hsing |
|---|---|
| 論文名稱: |
可銲性和非可銲性鋁鈧合金之動態塑性變形行為與顯微結構比較研究 Comparative Study of Dynamic Impact Properties and Microstructures of Weldable and Unweldable Aluminum-Scandium (Al-Sc) Alloy |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 鋁鈧合金 、應變速率敏感性 、韌窩結構 、差排 、Al3Sc析出物 、熱活化體積 、熱活化能 |
| 外文關鍵詞: | Al-Sc alloy, dislocation, dimple structure, Al3Sc precipitate, activation energy, activation volume, strain rate sensitivity |
| 相關次數: | 點閱:161 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用霍普金森試驗機(split-Hopkinson pressure bar, SHPB)探討可銲性和非可銲性之鋁鈧合金的動態變形行為。變形之應變速率範圍為:1.2×103s-1到5.9×103s-1;在各應變速率下,變形之溫度分別為-100℃, 25℃及300℃。藉以探討應變速率及溫度對兩種鋁鈧合金之動態機械反應的影響;並利用SEM及TEM技術分析兩種鋁鈧合金之破壞形貌及微觀組織變化情形。研究結果顯示兩種鋁鈧合金的塑流應力隨、加工硬化率及應變速率敏感性係數皆隨著應變速率增加而增加,但卻隨溫度增加而減少。且非可銲性之鋁鈧合金之塑流應力、加工硬化率及應變速率皆高於可銲性鋁鈧合金。而兩種鋁鈧合金變形時的熱活化體積及熱活化能(∆G*),皆隨溫度的上升及應變速率下降而增加。此外,Zerilli-Armstrong FCC模式之統制方程式可準確地用來描述兩種鋁鈧合金動態塑性變形行為,其誤差值皆在5%之內。SEM的破壞形貌分析結果顯示,兩種鋁鈧合金破壞表面皆存在韌窩(dimple-like)組織的破壞形貌,屬韌性破壞的類別。同時比較兩種鋁鈧合金破壞形貌發現,非可銲性的鋁鈧合金破壞表面的韌窩形狀較可銲性鋁鈧合金來得平坦且稀疏,顯示可銲性鋁鈧合金的延性較非可銲性鋁鈧合金較佳。微觀TEM之觀察發現,兩種鋁鈧合金都有Al3Sc析出物析出在基地及晶界處,並造成差排在析出物附近累積;這些Al3Sc析出物可以阻擋差排的運動,並形成強化的重要因素。從差排結構分析中,可發現兩種鋁鈧合金之差排密度皆隨應變速率之增加而增加,但卻隨溫度上升而減少。此外,非可銲性鋁鈧合金之差排密度在各種實驗條件下皆高於可銲性鋁鈧合金,其對應之差排胞尺寸卻小於可銲性鋁鈧合金,可再度印證非可銲性鋁鈧合金較可銲性鋁鈧合金有較高的塑流阻抗。
This thesis utilizes a compressive split-Hopkinson pressure bar to investigate the dynamic deformation behaviours of two weldable and unweldable Al-Sc alloys at strain rates ranging from 1.2×103s-1 to 5.9×103s-1 and temperatures of –100 , 25 and 300 , respectively. The fracture features and microstructures of the impacted specimens are examined using scanning electron microscopy and transmission electron microscopy, respectively. The stress-strain relationships indicate that for both alloys, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, but decrease with increasing temperature. Moreover, the flow stress, work hardening rate and strain rate sensitivity are higher in the unweldable Al-Sc alloy than in the weldable alloy. In both alloys, the activation volume and activation energy increase as the temperature increases or the strain rate decreases. Additionally, the fracture strain reduces with increasing strain rate and decreasing temperature. In describing the plastic deformation behaviour of the two Al-Sc alloys using the Zerilli-Armstrong fcc constitutive model, the error between the predicted flow stress and the measured stress is found to be less than 5%. The SEM observations reveal that the surfaces of the fractured specimens are characterised by transgranular dimple-like features, which are indicative of a ductile fracture mode. The dimple-like structures on the fracture surfaces of the unweldable Al-Sc alloy are shallower than those on the fracture surfaces of the weldable Al-Sc alloy, which indicates that the weldable Al-Sc alloy has a better ductility than the unweldable Al-Sc alloy. The TEM images show that the microstructures of the two alloys contain a random dispersion of fine Al3Sc precipitates within the matrix and an accumulation of relatively coarse Al3Sc precipitates at the grain boundaries. These particles prevent dislocation motion, and therefore prompt a significant strengthening effect. The TEM observations also reveal that in both alloys, the dislocation density increases with increasing strain rate, but decreases with increasing temperature. Furthermore, it is found that the dislocation density of the unweldable Al-Sc alloy is higher than that of the weldable Al-Sc alloy. In other words, the dislocation cells in the unweldable Al-Sc alloy are smaller than those in the weldable Al-Sc alloy. Thus, it is inferred that the unweldable Al-Sc alloy has a higher flow stress than the weldable Al-Sc alloy.
1. L.A Willey, Aluminum Scandium Alloy, USA patent no.3 619 181, 1971.
2. Z. Ahmad, “The Properties and Application of Scandium-Reinforced Aluminum,” JOM, Vol. 55, No.2, pp. 35-39, 2003.
3. V. V. Zakharov and T. D. Rostova, “High-strength weldable alloy 1970 based on the Al-Zn-Mg system,” Met. Sci. Heat Treat, Vol. 47, pp. 97-101, 2005.
4. L.S. Kramer, W.T. Tack and M.T. Fernandes, “Scandium in aluminum alloys” Adv. Mate. Process., Vol. 152, pp. 23-4. 1997.
5. Y.W. Riddle and T.H. Sanders, Jr., “A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys,” Metall. Mater. Trans. A, Vol. 35, pp. 341-350, 2004.
6. S. V. Senkova, O. N. Senkov and D. B. Miracle, “Cryogenic and elevated temperature strengths of an Al−Zn−Mg−Cu alloy modified with Sc and Zr,” Metall. Mater. Trans. A, Vol. 37, pp. 3569-3575, 2006.
7. C.B. Fuller, D. N. Seidman and D.C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperature,” Acta Mater., Vol. 51, 2003, 4803-4814
8. T. D. Rostova, V. G. Davydov, V. I. Yelagin and V. V. Zakharov, “Effect of scandium on recrystallization of aluminum and its alloys” Mater. Sci. Forum, Vol.331, pp. 793-798, 2000.
9. Y.W. Riddle and T.H. Sanders Jr., “A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys” Metall. Mater. Trans. A, Vol. 35A, pp. 341-50, 2004.
10. M.J. Jones and F.I. Humphreys, “Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium,” Acta Mater., Vol. 51, pp. 2149-59, 2003.
11. B. Irving, “Scandium places aluminum welding on a new plateau,” Weld. J., Vol. 76, pp.53-7, 1997.
12. C.S. Paglia, K.V. Jata and R.G. Buchheit, “A cast 7050 friction stir weld with scandium: microstructure, corrosion and environmental assisted cracking,” Mater. Sci. Eng. A, Vol. A424, pp. 196-204, 2006.
13. A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley and P.B. Prangnell, “Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding” Mater. Sci. Eng. A, 2003, Vol. A354, pp. 188-198.
14. J. Wloka and S. Virtanen, “Influnece of scandium on pitting behaviour of Al-Zn-Mg-Cu alloys,” Acta Mater., Vol. 55, pp. 6666-6672, 2007.
15. V. Singh, K.S. Prasad and A.A. Gokhale, “Microstructure and age hardening response of cast Al-Mg-Sc-Zr alloys,” J. Mater. Sci., Vol. 39, pp. 2861-2864, 2004.
16. V. V. Zakharov, T. D. Rostova and I. A. Fisenko, “High-Strength Weldable Corrosion-Resistant Aluminum Alloy for Bearing Building Structures,” Met. Sci. Heat Treatment, Vol. 47, pp. 377-382, 2005.
17. A.K. Mukhopadhyay, K.S. Prasad, V. Kumar, G.M. Reddy, S.V. Kamat and V.K. Varma, ”Key microstructural features responsible for improved stress corrosion cracking resistance and weldability in 7××× series Al alloys containing micro/trace alloying additions,” Mater. Sci. Forum, Vol. 519-521, pp. 315-320, 2006.
18. M. Nakayama, T. Okuyama and Y. Miura, “Interaction between θ prime -Al2Cu and Al3Sc in the heterogeneous precipitation in an Al-Cu-Sc alloy,” Mater. Sci. Forum, Vol. 331, pp. 927-932, 2000.
19. R. Kapoor and S. Nemat-Nasser, “Determination of temperature rise during high strain rate deformation,” Mech. Mater., Vol. 27, pp.1-12, 1998.
20. S. Nemat-Nasser and J.B. Issacs, “Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys,” Acta Mater., Vol. 45, pp. 907-919, 1996.
21. S.J. Craig, D.R. Gaskell, P. Rockett and C. Ruiz, “A experimental technique for measuring the temperature rise during impact testing,” J. Phys. IV, Vol. C8, pp. 41-46, 1994.
22. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys,” Acta Mater., Vol. 50, pp. 553-564, 2002.
23. H. Akamatsu, T. Fujinami, Z. Horita and T.G. Langdon, “Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP,” Scr. Mater., Vol. 44, pp. 759-764, 2001.
24. F. Musin, R. Kaibyshev, Y. Motohashi and G. Itoh, “High Strain Rate Superplasticity in a Commercial Al-Mg-Sc Alloy,” Scr. Mater., Vol. 50, pp. 511-516, 2004
25. Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes and T. G. Langdon, “Superplastic Forming at High Strain Rates After Severe Plastic Deformation,” Acta Mater., Vol. 48, pp. 3633-3640, 2000.
26. T. Torma, E. Kovács-csetényi, T. Turmezey, T. Ungár and I. Kovács: J. Mater. Sci., 1989, Vol. 24, pp. 3924-27.
27. M.L. Kharakterova, D.G. Eskin and L.S. Toropova, “Precipitation hardening in ternary alloys of the Al-Sc-Cu and Al-Sc-Si systems,” Acta Metall. Master., Vol. 42, pp. 2285-90, 1994.
28. N. Blake and M.A. Hopkins, “Constitution and age hardening of Al-Sc alloys,” J. Mater. Sci., Vol. 20, pp. 2861-2867, 1985.
29. F. Fazeli, W.J. Poole and C.W. Sinclair, “Work hardening behaviour of an Al-2.8Mg-0.16Sc alloy,” Mater. Sci. Forum, Vol. 519-521, pp. 961-966, 2006.
30. K. D. Woo, S. W. Kim, C. H. Yang, T. P. Lou and Y. Miura, “Effects of Grain Size on High Temperature Deformation Behavior of Al-4Mg-0.4Sc Alloy,” Mater. Lett., Vol. 57, pp. 1903-1909, 2003.
31. Sitdikov, O.; Sakai, T.; Avtokratova, E.; Kaibyshev, R.; Kimura, Y.; Tsuzaki, K.,” Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP conditions,” Mater. Sci. Eng. A, Vol. 444, 18-30, 2007.
32. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita and T.G. Langdon, “Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy,” Acta Mater., 2001, Vol. 49, pp. 3829-3838.
33. G. Sakai, Z. Horita and T.G. Langdon, “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion,” Mater. Sci. Eng. A, Vol. 393, pp. 344-51, 2005.
34. V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov and V. I. Yelagin, “Scientific Principles of Making an Alloying Addition of Scandium to Aluminum Alloys,” Mater. Sci. Eng. A, Vol. 280, pp. 30-36, 2000.
35. P. Cavaliere, “Effect of minor Sc and Zr addition on the mechanical properties of friction stir processed 2024 aluminum alloy,” J. Mater. Sci., Vol. 41, pp. 4299-4302, 2006.
36. J. R. Davis, Aluminum and Aluminum Alloys, ASM Specialty Handbook, pp. 31, 1994.
37. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum, Volume 1, Physical Metallurgy and Processes, pp. 881-914, 2003.
38. Yu. A. Filatov, V. I. Yelagin and V. V. Zakharov, “New Al-Mg-Sc Alloys,” Mater. Sci. Eng. A, Vol. 280, pp. 97-101, 2000
39. A. F. Norman, P. B. Prangnell and R. S. McEwen, “The Solidification Behaviour of Dilute Aluminum-Scandium Alloys,” Acta Mater., Vol. 46, pp. 5715-5732, 1998.
40. K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. Kumar and R. N. Ghosh, “Microstructure, Tensile Strength and Wear Behaviour of Al-Sc Alloy,” Materials Science and Engineering A, Vol. 383, pp. 374-380, 2004
41. Kun. Yu, W. Li, S. Li and J. Zhao, “Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases,” Materials Science and Engineering A, Vol. 368, pp. 88-93, 2004.
42. D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys,” Acta Mater., Vol. 50, pp. 4021-4035, 2002.
43. Yu. V. Milman, D.V. Lotsko and O.I. Sirko, “Sc effect of improving mechanical properties in aluminum alloys,” Mater. Sci. Forum, Vol. 331, pp. 1107-1112, 2000.
44. V. Ocenasek and M. Slamova, “Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys” Mater. Charact., Vol. 47, pp. 157-62, 2001.
45. Y. Miura, T. Shioyama and D. Hara, “Recryatallization of Al-3Mg and Al-3Mg-Sc.3Sc alloys,” Mater. Sci. Forum, Vol. 218-222, pp. 505-510, 19960.
46. H.B. Geng, S.B. Kang and B.K. Min, “High temperature tensile behavior of ultra-fine grainned Al-3.3Mg-0.2 Sc -0.2Zr alloy by equal channel angular pressing,“ Mater. Sci Eng A, Vol 373, pp. 229-238, 2004.
47. E.A. Marquis and N. D. Seidman, “Nanoscale structural evolution of Al3SC and Sedmann,” Acta Mater., Vol. 49, pp. 1909-1919, 2001.
48. S. Lee, M. Furukawa, Z. Horita and T.G. Langdon, “Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions,” Mater. Sci. Eng. A, Vol. 342, pp. 294-301, 2003.
49. T.G. Nieh, L.M. Hsiung, J. Wadsworth and R. Kaibyshev, “High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy,” Acta Mater., Vol. 46, pp. 2789-2800, 1998.
50. M. A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, N. Y., 1994.
51. Y. L. Bai and B. Dodd: Adiabatic Shear Localization Occurrence, Theories and Applications, Pergamon Press, N. Y., 1992
52. K. F. Graff, Wave Motion in Elastic Solids, Ohio State University Press, O. H., 1975.
53. M. R. Staker: “Introduction of high strain rate testing”, Metals Handbook, Vol. 8 Mechanical testing (ed. by J. R. Newby et. al.), 1985.
54. H. Kolsky: “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading”, Proc. Royal Soc. B, 62, p 676, 1949.
55. R. M. Davies: “A Critical Study of the Hopkinson Pressure Bar”, Phil. Trans. A, 240, pp. 375-457, 1948.
56. F. E. Hauser, J. A. Simmons and J. E. Dorn, “Strain Rate Effects in Plastic Wave Propagation”, Response of Metal to High Velocity Deformation, 9, pp. 63-, 1961
57. P. S. Follansbee: “The Hopkinson bar”, Metals Handbook, Vol. 8 Mechanical testing (ed. by J. R. Newby et. al.), 1985.
58. J. Harding, E. D. Wood and J. D. Campbell, “Tensile Testing of Material at Impact Rates of Strain”, J. Mech. Eng. Sci., 2, pp.88-96, 1960.
59. U. S. Lindholm and L. M. Yeakley, “High Strain Rate Testing: Tension and Compression”, Exp. Mech., 8, pp. 1-9, 1968.
60. T. Nicholas, “Tensile Testing of Materials at High Rates of Strain”, Exp. Mech., 21, pp. 177-185, 1980.
61. W. E. Baker and C. H. Yew, “Strain-Rate effects in the Propagation of Torsional Plastic Waves”, J. Appl. Mech., 33, pp.917-923, 1966.
62. Y. L. Bai, Q. Xue, Y. B. Xu and L. T. Shen, “Characteristics and Microstructure in Evolution of Shear Location in Ti6Al4V Alloy”, Mech. Mater., 17, pp.155-164, 1994.
63. Y. B. Xu, Y. L. Bai, Q. Xue and L. T. Shen “Formation Microstructure and Development of the Localized Shear Deformation in Low Carbon Steels”, Acta Mater., 44, pp.1917-1926, 1996.
64. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
65. H. Conrad, “Thermally activated deformation of metals”, J. Metal, pp. 582-588, 1964.
66. M.A. Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H. H. Fu, “Constitutive description of dynamic deformation: physically-based mechanisms”, Mater. Sci Engng. A, 322, pp. 194-216, 2002.
67. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
68. P. Ludwick, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, p. 32, 1909.
69. R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure shear impact and dynamic viscoplastic response of metals”, Mech. Mater., 4, pp.375-385, 1985.
70. G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures”, Proceeding of the 7th International Symposium on Ballistics, 1983, pp. 541-547.
71. P. S. Follansbee and U. F. Kocks, “A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable”, Acta Metall., 36, pp. 81-93, 1988.
72. F. J. Zerilli and R. W. Armstrong, “Dislocation-mechanics-based constitutive relations for material dynamics calculations”, J. Appl. Phys., 61, pp.1816-1825, 1987.
73. R. W. Armstrong, “Relation between the Petch friction stress and the thermal activation rate equations”, Acta Metall., 15, pp.667-668, 1967.
74. F. J. Zerilli and R. W. Armstrong, “Constitutive equation for HCP metals and high strength alloy steels”, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, 48, pp.121-126, 1995.
75. G. R. Johnson and T. J. Holmquist, “Evaluation of cylinder-impact test data for constitutive model constants”, J. Appl. Phys., 64, pp.3901-3910, 1988.
76. J.L. Chiddister and L.E. Malvern, “Compression-impact testing of aluminum at elevated” Exp. Mech,. Vol. 3, pp. 81-90.
77. W.S. Lee and T.H. Chen, “Dynamic Mechanical Response and Microstructural Evolution of High Strength Aluminum-Scandium (Al-Sc) Alloy,” Mater. Trans. 47, 355-363, 2006.
78. L.E. Malvern, “The propagation of longitudinal waves of deformation in a bar of metal exhibiting a strain rate effect,” J. Appl. Mech., Vol. 18, pp. 203-208, 1951.
79. J. W. Dally, and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
80. K. Oi, “Transient Response of Bonded Strain Gages”, Exp. Mech., 6, pp. 463-469, 1966.
81. L. W. Bickle, “The Response of Strain Gages to Longitudinally Sweeping Strain Pulses,” Exp. Mech., 10, pp. 333-337, 1970.
82. R.K. Ham, “The determination of dislocation densities in thin film” Phil. Mag., Vol. 6, pp. 1183-1184, 1961.
83. H. Kobayashi and B. Dood, “A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth,” Int. J. Impact Eng., Vol. 8, pp. 1-13, 1989.
84. J. R. Klepaczko and C. Y. Chiem, “Rate sensitivity of f. c. c. metals instantaneous rate sensitivity and rate sensitivity of strain hardening,” J. Mech. Phys. Solids, Vol. 34, 29-54, 1986.
85. G. Regazzoni, U.F. Kock and P.S. Follansbee, “Dislocation kinetics at high strain rates,” Acta Metall., Vol. 35, pp. 2865-2875, 1987.
86. W.S. Lee and C.F. Lin, “Impact properties and microstructure evolution of 304L stainless steel,” Mater. Sci. Eng., Vol. 308, pp. 124-135, 2001.
87. Y. Lin, J. Zhu and H. Zhu, “The plastic deformation of an α -Ti alloy and its thermal activation process vs effective stress,” Matell. Mater. Trans. A, Vol. 23, pp. 335-340, 1992.
88. W.S. Lee and C.Y. Liu, “The effects of temperature and strain rate on the dynamic flow behaviour of different steels,” Mater. Sci. Eng., Vol. 426, pp. 101-113, 2006.
89. Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai and M.A. Meyers, “Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy” Mater. Sci. Eng. A, Vol. 299, pp. 287-295, 2001.
90. W.S. Lee, W.C. Sue, C.F. Lin and C.J. Wu, “The Strain Rate and Temperature Dependence of The Dynamic Impact Properties of 7075 Al Alloy” J. Mater. Process Tech., Vol. 100, pp. 116-22, 2000.
91. I. Kentaro and M. Yasuhiro, “Dynamic recrystallization in Al-Mg-Sc alloys,”Mater. Sci. Eng. A, Vol. 387-389, 647-650, 2004.
92. A. Cuniberti and A. Picasso, “Activation volume measurement techniques: application to Zircaloy-4,” Phys. Stat. Sol. (a), Vol. 183, 373-379, 2001.
93. L. Shi and D.O. Northwood, “Mechanical behavior of an AISI type 310 stainless steel,” Acta Metall. Mater., Vol. 43, 453-460, 1995.
94. B.Q. Han, E.J. Lavernia and F.A. Mohamed, “Mechanical behavior of a cryomilled near-nanostructured Al-Mg-Sc alloy,” Metall. Mater. Trans. A, Vol. 36, pp. 345-355, 2005.
95. D.N. Seidman, E.A. Marquis and D.C. Dunand, “Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys” Acta Mater., Vol. 50, pp. 4021-4053, 2002.
96. L.E. Murr, “Residual microstructure-mechanical property relationships in shock-loaded metals and alloys” in Shock Wave and High-Strain Rate Phenomena in Metals, (ed. M.A. Meyers and L.E. Murr), Chapter 37, pp. 607-673, 1981, Plenum Press, New York.
97. W.S. Lee, J.C. Shyu, and S.T. Chiou, “Effect of strain rate on impact response and dislocation ubstructure of 6061-T6 aluminum alloy” Scripta Metall., Vol. 41, pp. 51-56, 2000.
98. J.C. Shyu: Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 1999, pp.64-65.
99. J.M. Rivas, S. A. Quinones and L.E. Murr, “Hypervelocity impact cratering: Microstructural characterization” Scripta Metal. et Materialia., Vol. 33, pp. 101-107, 1995.
100. J. Cuddy and M. N. Bassim, “Study of Dislocation Cell Structures From Uniaxial Deformation of AISI 4340 Steel,” Mater. Sci. Eng. A, Vol. 113, 421-429, 1989.
101. C.T. Young, T.J. Headley and J.L. Lytton, “Dislocation Substructures Formed During the Flow Stress Recovery of High Purity Aluminum,” Mater. Sci. Eng., Vol. 81, 391-407, 1986.
102. R.W. Hyland Jr, M. Asta, S.M. Foiles and C.L.Rohrer, “Al(f.c.c.):Al3Sc(L12) interphase boundary energy calculations,” Acta Mater., Vol. 46, pp. 3667-3678 ,1998.
103. C.L. Fu, “Electronic, elastic, and fracture properties of trialuminide alloys. Al3Sc and Al3Ti,” J. Mater. Res., Vol. 5, pp. 971-979, 1990.
104. C.G. Shastry, P. Parameswaran, M.D. Mathew, K.B.S. Rao and S.L. Mannan, “The effect of strain rate and temperature on the elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel,” Mater. Sci. Eng. A, Vol. 465, pp. 109-115, 2007.
105. W. S. Lee, C. F. Lin, T. H. Chen and H. H. Hwang, “High Strain Rate Deformation of Ti-15Mo-5Zr-3Al Alloy Over a Wide Temperature Range” Mater. Sci. Tech., Vol. 24, pp.15-25, 2008