| 研究生: |
許嘉峰 Hsu, Chia-Feng |
|---|---|
| 論文名稱: |
金屬摻雜氧化鐵薄膜之記憶體儲存裝置特性研究 Research Characteristics of Metal-Doped Iron Oxide Thin Film Resistive Random-Access Memory Device |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 氧化鐵 、濺鍍機 、雙極性電阻轉換 、電阻式記憶體 |
| 外文關鍵詞: | Fe2O3, sputtering, Bipolar transistor, RRAM |
| 相關次數: | 點閱:61 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文旨在探討電阻式記憶體(RRAM)的製作及其性能,特別是以摻雜離子的氧化鐵薄膜作為電阻切換層的應用。研究中採用了多種材料特徵技術,包括X光繞射(XRD)和X射線光電子能譜(XPS),以深入分析材料的品質與特性。
在第一部分,我們利用濺鍍法製作電阻切換元件,並研究其在電流與電壓特性方面的表現。具體而言,製備了具有電阻切換特性的Fe2O3及其Ag摻雜版本。研究結果顯示,Ag的摻雜顯著提升了元件性能。測試結果表明,資料保持時間可達104秒以上,且電阻的開/關比率約為10³。平均設置電壓和重置電壓分別為0.94V和-1.35V。性能的提升主要歸因於氧空位與Ag原子之間的相互作用,這促進了導電絲的形成。XPS分析顯示,隨著Ag的摻雜,氧空位的數量顯著增加,進一步提升了元件性能。此外,Ag原子作為陷阱中心,能夠更有效地捕獲和釋放電荷,進一步促進導電絲的形成。因此,Ag摻雜的Fe2O3在RRAM元件中展現出良好的應用潛力。
在第二部分,我們探討了使用射頻濺鍍系統製作的ITO/Cu摻雜Fe2O3/ITO薄膜電阻式記憶體(RRAM)。XRD圖譜顯示,Cu:Fe2O3薄膜具有菱面體結構,且未檢測到銅的二次相或雜質相。在設置電壓(Vset)方面,Cu:Fe2O3薄膜的標準偏差和平均電壓分別為-1.98V和0.92V,而重置電壓(Vreset)的數值分別為0.39V和1.31V。Cu:Fe2O3薄膜的電阻開關週期及資料保持測試結果顯示,其開/關比為39.1,保持時間超過104秒,表明Cu摻雜的Fe2O3薄膜能有效改善RRAM性能。
此外,還分析了氧化鐵薄膜在電阻式記憶體中的特性。實驗結果顯示,氧化鐵薄膜具備優異的可程式設計性和穩定性,適合用於電阻式記憶體的製備。透過調控氧化鐵薄膜的結構與生成過程,可以有效提升記憶體性能,為其在實際應用中的推廣提供有力的研究參考。
本研究的意義在於,通過對不同摻雜元素的引入和材料特性的深入分析,我們能夠更全面地理解和優化RRAM的性能。Ag和Cu摻雜的氧化鐵薄膜在電阻切換特性上的顯著改善,為未來高性能RRAM的開發提供了新的思路和方向。這不僅有助於提升記憶體的資料保持能力和開關週期,還能有效降低操作電壓,提升整體能源效率。
未來的研究可以進一步探討不同摻雜元素及其濃度對RRAM性能的影響,並嘗試將這些技術應用於其他類型的記憶材料。此外,還可以研究不同製程條件對薄膜結構和性能的影響,以尋找最佳的製作工藝。這些研究將有助於推動RRAM技術的商業化應用,並在更廣泛的電子設備中實現高效和穩定的資料存儲。
This paper aims to investigate the fabrication and performance of resistive random-access memory (RRAM), particularly the application of iron oxide thin films doped with ions as the resistive switching layer. Various material characterization techniques, including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), were employed to thoroughly analyze the quality and characteristics of the materials.
In the first part, we fabricated resistive switching devices using the sputtering method and studied their current-voltage characteristics. Specifically, we prepared Fe2O3 and its Ag-doped versions with resistive switching properties. The research results indicated that Ag doping significantly enhanced the device performance. The test results showed that the data retention time could exceed 104 seconds, and the resistance on/off ratio was about 10³. The average set voltage and reset voltage were 0.94V and -1.35V, respectively. The performance enhancement was mainly attributed to the interaction between oxygen vacancies and Ag atoms, which facilitated the formation of conductive filaments. XPS analysis revealed that the number of oxygen vacancies significantly increased with Ag doping, further improving the device performance. Moreover, Ag atoms acted as trap centers, effectively capturing and releasing charges, further promoting the formation of conductive filaments. Therefore, Ag-doped Fe2O3 demonstrated good application potential in RRAM devices.
In the second part, we investigated the ITO/Cu-doped Fe2O3/ITO thin-film RRAM fabricated using the RF sputtering system. XRD patterns showed that the Cu:Fe2O3 film had a rhombohedral structure, with no secondary phase or impurity phase of copper detected. In terms of set voltage (Vset), the standard deviation and average voltage of the Cu:Fe2O3 film were -1.98V and 0.92V, respectively, while the reset voltage (Vreset) values were 0.39V and 1.31V, respectively. The switching cycle and data retention tests of the Cu:Fe2O3 film showed an on/off ratio of 39.1 and a retention time exceeding 104 seconds, indicating that Cu-doped Fe2O3 films could effectively improve RRAM performance.
Furthermore, we analyzed the properties of iron oxide thin films in resistive memory. The experimental results showed that iron oxide thin films have excellent programmability and stability, making them suitable for the fabrication of resistive memory. By adjusting the structure and fabrication process of iron oxide thin films, memory performance can be effectively enhanced, providing valuable research references for their practical application.
The significance of this study lies in the comprehensive understanding and optimization of RRAM performance through the introduction of different dopant elements and in-depth analysis of material properties. The significant improvements in the resistive switching characteristics of Ag and Cu-doped iron oxide thin films provide new ideas and directions for the development of high-performance RRAM in the future. This not only helps to enhance data retention capability and switching cycles of the memory but also effectively reduces operating voltage, thereby improving overall energy efficiency.
Future research can further explore the effects of different dopant elements and their concentrations on RRAM performance and attempt to apply these techniques to other types of memory materials. Additionally, studying the impact of different fabrication conditions on thin-film structure and performance could help identify the optimal manufacturing process. These studies will contribute to the commercialization of RRAM technology and the realization of efficient and stable data storage in a broader range of electronic devices.
[1] Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21 (25-26), 2632-+.
[2] Guo, Y. Z.; Robertson, J., Materials selection for oxide-based resistive random access memories. Appl. Phys. Lett. 2014, 105 (22), 5.
[3] Lee, M. J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y. B.; Kim, C. J.; Seo, D. H.; Seo, S.; Chung, U. I.; Yoo, I. K.; Kim, K., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 2011, 10 (8), 625-630.
[4] 葉林秀、李佳謀、徐明豐、吳德和,磁阻式隨機存取記憶體技術的發展,中華民 國物理學會物理雙月刊,第二十六卷,第四期,第 607-619 頁,2004 年。
[5] 梁舒評,ITO 電極對電阻式記憶體切換特性的機制與研究,國立中山大學機械與 機電工程學系研究所碩士論文,第 4-5 頁,2013 年。
[6] P. K. Panda, “Piezoceramic Materials and Devices for Aerospace Applications,” Indian Institute of Metals Series, pp. 501–518, Nov. 2016
[7] 鍾朝安,淺談相變化記憶體,電子與材料雜誌,第 14 期,第 71-79 頁,民國 91 59 年。
[8] P. Fantini, “Phase change memory applications: the history, the present and the future,” Journal of Physics D: Applied Physics, Vol. 53, pp. 1-9, 2020.
[9] 高韻涵,Ba0.6Sr0.4Ti1-xMnxO3 電阻式記憶體元件特性之研究,南臺科技大學電 子工程系碩士論文,第 5 頁,2023 年
[10] S. Munjal, and N. Khare, “Advances in resistive switching based memory devices,” Journal of Physics D: Applied Physics, vol. 52, no. 43, 2019.
[11] P. Zhou, L. Ye, Q. Q. Sun et al., “Effect of concurrent joule heat and charge trapping on RESET for NbAlO fabricated by atomic layer deposition,” Nanoscale Research Letters, vol. 8, Feb, 2013.
[12] E. W. Lim, and R. Ismail, “Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey,” Electronics, vol. 4, no. 3, pp. 586-613, Sep, 2015.
[13] F.-C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
[14] C. P. Kwan, M. Street, A. Mahmood et al., “Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates,” AIP Advances, vol. 9, no. 5, 2019.
[15] T. I. Awan, A. Bashir, and A. Tehseen, Chemistry of Nanomaterials: Fundamentals and Applications: Elsevier, 2020.
[16] R. J. Martín-Palma, and A. Lakhtakia, "Vapor-deposition techniques," Engineered Biomimicry, pp. 383-398: Elsevier Inc., 2013.
[17] M. Hughes, "What is E-Beam Evaporation? (2016, June 15). Retrieved from http://www.semicore.com/news/89-what-is-e-beam-evaporation."
[18] J. X. Zhang, and K. Hoshino, “Fundamentals of nano/microfabrication and scale effect,” Molecular Sensors and Nanodevices; Zhang, JXJ, Hoshino, K., Eds, pp. 43- 111, 2019.
[19] Stevie, Fred A., and Carrie L. Donley. "Introduction to x-ray photoelectron spectroscopy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 38.6 (2020): 063204.
[20] https://zh.wikipedia.org/zh-tw/%E6%B0%A7%E5%8C%96%E9%93%81
[21] G.D. Zhou, X.D. Yang, L.H. Xiao, B. Sun, A.K. Zhou, Investigation of a submerging redox behavior in Fe2O3 solid electrolyte for resistive switching memory, Appl. Phys. Lett. 114(16) (2019) 5.
[22] S. Porro, K. Bejtka, A. Jasmin, M. Fontana, G. Milano, A. Chiolerio, C.F. Pirri, C. Ricciardi, A multi-level memristor based on atomic layer deposition of iron oxide, Nanotechnology 29(49) (2018) 9.
[23] M. Tang, B. Sun, J. Huang, J. Gao, C.M. Li, High performance white-light-controlled resistance switching memory of an Ag/α-Fe2O3/FTO thin film, RSC Adv. 6(30) (2016) 25028-25033.
[24] Y.Y. Cai, Q.L. Yuan, Y.X. Ye, J. Liu, C.H. Liang, Coexistence of resistance switching and negative differential resistance in the α-Fe2O3 nanorod film, Physical Chemistry Chemical Physics 18(26) (2016) 17440-17445.
[25] C. Yun, X.G. Chen, J.B. Fu, Y.X. Zhang, J.R. Sun, Y.F. Wang, Y. Zhang, S.Q. Liu, G.J. Lian, Y.C. Yang, C.S. Wang, J.B. Yang, Fabrication of FeO<sub>x</sub> thin films and the modulation of transport and magnetic properties by resistance switching in Au/α-Fe2O3/Pt heterostructure, J. Appl. Phys. 115(17) (2014).
[26] Z.J. Ren, G.D. Zhou, S.Q. Wei, Multilevel resistive switching memory behaviors arising from ion diffusion and photoelectron transfer in α-Fe2O3 nano-island arrays, Physical Chemistry Chemical Physics 22(5) (2020) 2743-2747.