簡易檢索 / 詳目顯示

研究生: 黃昱維
Huang, Yu-Wei
論文名稱: 玻色/費米子張量網路與正規序超福克空間
Bosonic/Fermionic Tensor Network Diagram and Normal Ordering Super-Fock Space
指導教授: 張為民
Zhang, Wei-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: 張量網路量子開放系統主方程漲落-耗散關係式
外文關鍵詞: tensor network, open quantum system, master equation, fluctuation-dissipation relation
相關次數: 點閱:154下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文介紹了張量網路的推廣,稱為玻色/費米子張量網路,它捕捉了福克空間(Fock space)的交換對稱性,並為玻色/費米子算符的代數提供了直觀的視角。
    玻色/費米子張量網路體現了玻色/費米子系統的資訊流,其中粒子是資訊的載體,物理過程則將這些資訊關聯在一起。
    作為福克空間的類比,我們還為開放系統建立了對稱/反對稱張量代數,稱為正規序超福克空間,其中玻色/費米子超級算符是根據算符排序定義的,而狀態則表示為相關函數的集合。
    在這個表述中,可以很容易地推導出與熱庫雙線性耦合的系統的主方程,若與約化密度矩陣的表述相比,耗散和漲落之間的邊界變得非常地明確。
    耗散和漲落超級算符的代數表現出與雙線性耦合系統相似的結構,除了它們的么正性質。這說明開放系統的完整動力學不能用李群來描述,並體現了開放系統的非馬爾科夫性和記憶效應。
    我們還完成了對二次冪耦合和壓縮態的擴展。

    A generalization of tensor network diagram, called bosonic/fermionic tensor network diagram, is introduced, which captures the exchange symmetry of Fock spaces, and provides an intuitive perspective on the algebra of boson/fermion operators.
    It manifests information flows of boson/fermion systems, in which particles are carriers of information, and physical processes correlate information together.
    As an analogy for Fock spaces, symmetric/antisymmetric tensor algebras for open systems are also established, called normal ordering super-Fock space, in which the boson/fermion superoperators are defined based on orderings, and states are represented as sets of correlation functions.
    In this formulation, the master equation of the system bilinearly coupled to baths can be easily derived, and the boundary between dissipation and fluctuation is surprisingly clear compared to the formulation for the reduced density matrix.
    The algebra of dissipation and fluctuation superoperators exhibits a similar structure to bilinear coupled systems except for their unitary nature. This means the full dynamics of an open system cannot be described by Lie groups, that manifests the non-markovianity and memory effects of open systems.
    Extensions to quadratic couplings and squeezed states are also done.

    摘要 i Abstract ii 誌謝 iii Contents v List of Symbols vi 1 Introduction 1 1.1 Bosonic/Fermionic Tensor Network Diagram 1 1.2 Normal Ordering Super-Fock Space 2 1.3 Thesis Overview 3 2 Bosonic/Fermionic Tensor Network Diagram 5 2.1 Polynomial Representation 5 2.2 Contraction Rule 8 2.3 Bosonic/Fermionic Tensor Network Diagram 12 2.4 Physical Interpretation 18 3 Normal Ordering Super-Fock Space 22 3.1 Normal, Antinormal, Symmetric Ordering 23 3.2 Normal Ordering Super-Fock Space 25 3.3 Master Equation 29 3.3.1 Unitary Superoperator 30 3.3.2 Thermal State 31 3.3.3 Master Equation 32 3.3.4 Environmental Correlation 33 3.4 Algebra of Dissipation and Fluctuation 35 3.4.1 Particle Preserving System 36 3.4.2 Parity Preserving System 39 4 Conclusion 42 A Commuting/Anticommuting Variable 45 A.1 Variable 45 A.2 Derivative 45 A.3 Integral 46 A.3.1 Definition 46 A.3.2 Integral of Any Function 47 A.3.3 Fundamental Theorem 48 A.3.4 Delta Function 48 A.3.5 Transform of Variables 49 A.3.6 Cyclic/Anticyclic Property 50 A.4 Complex Variables as Commuting Variables 51 A.4.1 Complex Variable 51 A.4.2 Gaussian Integral 51 A.5 Grassmann Variables as Anticommuting Variables 52 A.5.1 Grassmann Variable 52 A.5.2 Berezin integral 53 A.5.3 Gaussian Integral 54 A.5.4 Transform of Variables 54 B Exact Master Equation 57 Bibliography 60 Papers Published and in Preparation 63

    S. R. White, "Density-matrix algorithms for quantum renormalization groups", Phys. Rev. B 48, 10345-10356 (1993).
    G. Vidal, "Efficient simulation of one-dimensional quantum many-body systems", Phys. Rev. Lett. 93, 040502 (2004).
    Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang, "Second renormalization of tensor-network states", Phys. Rev. Lett. 103, 160601 (2009).
    J. Biamonte and V. Bergholm, "Tensor networks in a nutshell", arXiv preprint arXiv:1708.00006, 10.48550/arXiv.1708.00006 (2017).
    R. P. Feynman, "Space-time approach to quantum electrodynamics", Phys. Rev. 76, 769-789 (1949).
    R. Penrose, "Applications of negative dimensional tensors", Combinatorial mathematics and its applications 1, 221-244 (1971).
    R. Penrose, "Angular momentum: an approach to combinatorial space-time", Quantum theory and beyond 151 (1971).
    R. Penrose, "On the nature of quantum geometry", Magic without magic, 333-354 (1972).
    Y. I. Manin, Vychislimoe i nevychislimoe [computable and uncomputable] (Sovetskoye Radio, Moscow, 1980).
    R. P. Feynman, "Simulating physics with computers", Int J Theor Phys 21, 467-488 (1982).
    R. P. Feynman, "Quantum mechanical computers", Foundations of Physics 16, 507-531 (1986).
    D. E. Deutsch and R. Penrose, "Quantum computational networks", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 425, 73-90 (1989).
    S. Abramsky and B. Coecke, A categorical semantics of quantum protocols, 2007.
    B. Coecke and R. Duncan, "Interacting quantum observables: categorical algebra and diagrammatics", New Journal of Physics 13, 043016 (2011).
    J. Baez and M. Stay, "Physics, topology, logic and computation: a rosetta stone", in New structures for physics, edited by B. Coecke (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 95-172.
    G. Moore and N. Read, "Nonabelions in the fractional quantum hall effect", Nuclear Physics B 360, 362-396 (1991).
    A. Stern, "Anyons and the quantum hall effect—a pedagogical review", Annals of Physics 323, 204-249 (2008).
    M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, "Topological quantum computation", Bulletin of the American Mathematical Society 40, 31-38 (2003).
    E. Witten, "Quantum field theory and the jones polynomial", Communications in Mathematical Physics 121, 351-399 (1989).
    T. Univalent Foundations Program, Homotopy type theory: univalent foundations of mathematics (https://homotopytypetheory.org/book, Institute for Advanced Study, 2013).
    S. Nakajima, "On quantum theory of transport phenomena: steady diffusion", Progress of Theoretical Physics 20, 948-959 (1958).
    R. Zwanzig, "Ensemble method in the theory of irreversibility", The Journal of Chemical Physics 33, 1338-1341 (1960).
    F. Shibata, Y. Takahashi, and N. Hashitsume, "A generalized stochastic liouville equation. non-markovian versus memoryless master equations", Journal of Statistical Physics 17, 171-187 (1977).
    H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Jan. 2007).
    U. Weiss, Quantum dissipative systems, 4th (WORLD SCIENTIFIC, 2012).
    G. Lindblad, "On the generators of quantum dynamical semigroups", Communications in Mathematical Physics 48, 119-130 (1976).
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, "Completely positive dynamical semigroups of n-level systems", Journal of Mathematical Physics 17, 821-825 (1976).
    M. W. Y. Tu and W.-M. Zhang, "Non-markovian decoherence theory for a double-dot charge qubit", Phys. Rev. B 78, 235311 (2008).
    J. Jin, M. W.-Y. Tu, W.-M. Zhang, and Y. Yan, "Non-equilibrium quantum theory for nanodevices based on the feynman-vernon influence functional", New Journal of Physics 12, 083013 (2010).
    W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, "General nonmarkovian dynamics of open quantum systems", Phys. Rev. Lett. 109, 170402 (2012).
    C. U. Lei and W.-M. Zhang, "A quantum photonic dissipative transport theory", Annals of Physics 327, 1408-1433 (2012).
    P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, "Master equation approach to transient quantum transport in nanostructures incorporating initial correlations", Phys. Rev. B 92, 165403 (2015).
    H.-L. Lai, P.-Y. Yang, Y.-W. Huang, and W.-M. Zhang, "Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gate-induced charge fluctuations", Phys. Rev. B 97, 054508 (2018).
    Y.-W. Huang, P.-Y. Yang, and W.-M. Zhang, "Quantum theory of dissipative topological systems", Phys. Rev. B 102, 165116 (2020).
    Y.-W. Huang and W.-M. Zhang, "Exact master equation for generalized quantum brownian motion with momentum-dependent system-environment couplings", Phys. Rev. Research 4, 033151 (2022).
    T. F. Havel, "Robust procedures for converting among lindblad, kraus and matrix representations of quantum dynamical semigroups", Journal of Mathematical Physics 44, 534-557 (2003).
    A. Gilchrist, D. R. Terno, and C. J. Wood, "Vectorization of quantum operations and its use", arXiv preprint arXiv:0911.2539, 10.48550/arXiv.0911.2539 (2009).
    T. Prosen, "Spectral theorem for the lindblad equation for quadratic open fermionic systems", Journal of Statistical Mechanics: Theory and Experiment 2010, P07020 (2010).
    E. Wigner, "On the quantum correction for thermodynamic equilibrium", Phys. Rev. 40, 749-759 (1932).
    K. E. Cahill and R. J. Glauber, "Density operators for fermions", Phys. Rev. A 59, 1538-1555 (1999).
    B. Dalton, J. Jeffers, and S. Barnett, "Grassmann phase space methods for fermions. i. mode theory", Annals of Physics 370, 12-66 (2016).
    W.-M. Zhang, D. H. Feng, and R. Gilmore, "Coherent states: theory and some applications", Rev. Mod. Phys. 62, 867-927 (1990).
    J. F. Corney and P. D. Drummond, "Gaussian quantum operator representation for bosons", Phys. Rev. A 68, 063822 (2003).
    J. F. Corney and P. D. Drummond, "Gaussian phase-space representations for fermions", Phys. Rev. B 73, 125112 (2006).
    A. Caldeira and A. Leggett, "Path integral approach to quantum brownian motion", Physica A: Statistical Mechanics and its Applications 121, 587-616 (1983).
    B. L. Hu, J. P. Paz, and Y. Zhang, "Quantum brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise", Phys. Rev. D 45, 2843-2861 (1992).
    F. Haake and R. Reibold, "Strong damping and low-temperature anomalies for the harmonic oscillator", Phys. Rev. A 32, 2462-2475 (1985).
    J. J. Halliwell and T. Yu, "Alternative derivation of the hu-paz-zhang master equation of quantum brownian motion", Phys. Rev. D 53, 2012-2019 (1996).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE