簡易檢索 / 詳目顯示

研究生: 陳志強
Chen, Chih-Ch'iang
論文名稱: 石墨烯微機電能量擷取器
Graphene based microelectromechanical energy harvesters
指導教授: 謝馬利歐
Mario Hofmann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 駐極體石墨烯碎片電容靜電能量擷取器
外文關鍵詞: electret, CYTOP, graphene flakes, capacitance, edge-mode, electrostatic, energy harvester
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小型且廉價的功能微電子產品擁有從根本上改變我們生活的潛力。但是這些產品需要一種新的能量來源來實現這一願景。而可以從周遭環境獲得能量的奈米微型能量擷取器正是我們所需要的,相比於依賴電池等能量儲存裝置,微型能量擷取器能夠讓微電子產品有更少的限制以及更好的表現。在這裡我們介紹一種新方法來製造石墨烯微機電能量擷取器。這種能量擷取器是利用裝有高分子駐極體的可變電容之變型產生電容值的變化,並從中擷取彎曲前後的系統能量差來進行發電。我們還利用一種「邊際模型」來提高系統能量差,這種模型結構可以簡單的用石墨烯碎片以及超音波噴塗系統來製造。我們預期石墨烯微機電能量擷取器相比於過去的可變電容式能量擷取器能夠有更好的表現,像是更高的效率與光穿透率、更好的彎曲承受能力、以及更低的成本。我們提出的方法能夠因此從我們的周遭之中開啟電子設備的整合的下一步。

    Autonomous small and cheap functional microelectronic devices have potential to fundamentally transform our daily life. A new type of power source, is needed, however, to realize this vision. Nano-mechanical generators can harvest energy from the surrounding which is better than relying on stored energy. Here a novel approach to fabricate nano-generators based on graphene thin films are presented. The mechanism relies on capacitance changes upon deformation of an electrode on an electret, The energy difference before and after bending can be converted into usable energy. We investigate two different harvester structures, traditional homogenous and “edge mode” generators. We show that these structures are easy to establish using graphene flakes and ultrasonic spray system. Graphene based nano-generators are expected to exhibit a wide variety of improvements over these variable capacitance generators such as high efficiency, transparency, mechanical flexibility, and low fabrication cost. The proposed approach could therefore enable the next step in the integration of electronics in our environment.

    Abstract I 摘要 II 誌謝 III Table of Contents V List of figures VII 1. Introduction 1 1.1. Energy harvester 2 1.1.1. Solar cell 2 1.1.2. Thermoelectric generator 3 1.1.3. Kinetic generator 4 1.2. Nature of graphene film 17 2. Experiment steps 21 2.1. Make electret 23 2.1.1. Make CYTOP film 23 2.1.2. Charge electret 25 2.1.3. Contact 27 2.2. Spray graphene flakes 29 2.3. Package 32 2.4. Evaporation of Au thin film 33 2.5. Test energy harvester 35 3. Result and discussion 36 3.1. Make electret 36 3.1.1. Make CYTOP thin film 36 3.1.2. Charging electret 39 3.2. Spray graphene layers 44 3.2.1. Temperature and solution 44 3.2.2. Concentration 48 3.2.3. Graphene flakes 48 3.2.4. Speed of nozzle 52 3.2.5. EFM measurement 54 3.3. Package 57 3.4. Bending test 63 3.4.1. Fake graphene generator 63 3.4.2. Traditional energy harvester 68 3.4.3. Edge-mode energy harvester 72 4. Conclusion 76 5. Outlook 77 6. References 77

    1. Waldner, J.-B., Nanocomputers and swarm intelligence. Vol. 12. John Wiley & Sons, London. p. 205.2008.
    2. Suzuki, Y. Development of a MEMS Energy Harvester with High-perfomance Polymer electrets. in Digest Tech. 10th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010). 2010.
    3. Chitransh, G., et al., EFFECT OF LOAD MISMATCHING ON ACTIVE SOLAR TECHNIQUE PV MODULE USING MATLAB/SIMULINK.
    4. Kiely, J.J., et al., Low-Cost Miniature Thermoelectric Generator. Electronics Letters, 27(25), p. 2332-2334,(1991).
    5. Schaevitz, S.B., et al., A combustion-based MEMS thermoelectric power generator. TRANSDUCERS '01. EUROSENSORS XV. 11th International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, p. 30-3 vol.1,(2001).
    6. Chunbo, Z., et al., Integrated combustor-thermoelectric micro power generator. TRANSDUCERS '01. EUROSENSORS XV. 11th International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, p. 34-7 vol.1,(2001).
    7. 2014/6/10; Available from: http://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/thermoeffect.png.
    8. Rowe, D.M., Thermoelectrics handbook: macro to nano. CRC press.2005.
    9. Vatansever, D., E. Siores, and T. Shah, Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures. GLOBAL WARMING–IMPACTS AND FUTURE PERSPECTIVE. p. 263-290.2012.
    10. Suzuki, Y., et al., A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. Journal of Micromechanics and Microengineering, 20(10),(2010).
    11. Boisseau, S., G. Despesse, and A. Sylvestre, Electret-based cantilever energy harvester: design and optimization. arXiv preprint arXiv:1111.2458,(2011).
    12. Tashiro, R., et al., Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. Journal of Artificial Organs, 5(4), p. 0239-0245,(2002).
    13. Arakawa, Y., Y. Suzuki, and N. Kasagi, Micro seismic power generator using electret polymer film. Proc. PowerMEMS, 187, p. 190,(2004).
    14. Sessler, G.M., Electrets, 3rd edition. Laplacian Press, California.1998.
    15. Minami, T., et al., SiO2 electret thin films prepared by various deposition methods. Thin Solid Films, 426(1-2), p. 47-52,(2003).
    16. Chen, Z.Y., Z.Q. Lv, and J.W. Zhang, PECVD SiO(2)/Si(3)N(4) double layers electrets on glass substrate. Ieee Transactions on Dielectrics and Electrical Insulation, 15(4), p. 915-919,(2008).
    17. Hsieh, W.H. and Y.-C. Tai, High performance MEMS thin-film teflon electret microphone,
    18. Boland, J., et al. Micro electret power generator. in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on. 2003. IEEE.
    19. Sakane, Y., Y. Suzuki, and N. Kasagi, The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), p. 6,(2008).
    20. Saad, A., et al., High-efficient, low-cost electret charging set-up for MEMS-based energy harvesting systems. Proc. Power MEMS, p. 61-64,(2010).
    21. Jean-Mistral, C., T. Vu-Cong, and A. Sylvestre, On the power management and electret hybridization of dielectric elastomer generators. Smart Materials and Structures, 22(10),(2013).
    22. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), p. 385-388,(2008).
    23. Mermin, N.D., CRYSTALLINE ORDER IN 2 DIMENSIONS. Physical Review, 176(1), p. 250-&,(1968).
    24. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), p. 902-907,(2008).
    25. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), p. 351-355,(2008).
    26. Dresselhaus, M.S. and G. Dresselhaus, INTERCALATION COMPOUNDS OF GRAPHITE. Advances in Physics, 30(2), p. 139-326,(1981).
    27. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 6(3), p. 183-191,(2007).
    28. Shioyama, H., Cleavage of graphite to graphene. Journal of Materials Science Letters, 20(6), p. 499-500,(2001).
    29. Viculis, L.M., J.J. Mack, and R.B. Kaner, A chemical route to carbon nanoscrolls. Science, 299(5611), p. 1361-1361,(2003).
    30. Horiuchi, S., et al., Single graphene sheet detected in a carbon nanofilm. Applied Physics Letters, 84(13), p. 2403-2405,(2004).
    31. Krishnan, A., et al., Graphitic cones and the nucleation of curved carbon surfaces. Nature, 388(6641), p. 451-454,(1997).
    32. Land, T.A., et al., STM INVESTIGATION OF SINGLE LAYER GRAPHITE STRUCTURES PRODUCED ON PT(111) BY HYDROCARBON DECOMPOSITION. Surface Science, 264(3), p. 261-270,(1992).
    33. Nagashima, A., et al., Electronic States of Monolayer Graphite Formed on Tic(111) Surface. Surface Science, 291(1-2), p. 93-98,(1993).
    34. Tompkins, H.G., et al., Auger-Electron Spectroscopy Observations of the V2o5-V6o13 Phase-Transition. Applied Surface Science, 21(1-4), p. 280-287,(1985).
    35. Forbeaux, I., J.M. Themlin, and J.M. Debever, Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Physical Review B, 58(24), p. 16396-16406,(1998).
    36. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 108(52), p. 19912-19916,(2004).
    37. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), p. 1191-1196,(2006).
    38. Ohta, T., et al., Controlling the electronic structure of bilayer graphene. Science, 313(5789), p. 951-954,(2006).
    39. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 306(5696), p. 666-669,(2004).
    40. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), p. 574-578,(2010).
    41. Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), p. 1339-1339,(1958).
    42. Choucair, M., P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 4(1), p. 30-33,(2009).
    43. Ultrasonic Spray Nozzle Overview. 2014/6/10; Available from: http://www.sono-tek.com/ultrasonic-nozzle-overview/.
    44. Bornside, D., C. Macosko, and L. Scriven, Spin coating of a PMMA/chlorobenzene solution. Journal of the Electrochemical Society, 138(1), p. 317-320,(1991).
    45. Giacometti, J.A., S. Fedosov, and M.M. Costa, Corona charging of polymers: Recent advances on constant current charging. Brazilian Journal of Physics, 29(2), p. 269-279,(1999).
    46. Ikezaki, K., M. Miki, and J.I. Tamura, Thermally Stimulated Currents from Ion-Injected Teflon-Fep Film Electrets. Japanese Journal of Applied Physics, 20(9), p. 1741-1747,(1981).
    47. Nimo, A., et al. 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls. in SPIE Microtechnologies. 2011. International Society for Optics and Photonics.
    48. Al-Sueimani, Y., A. Collins, and A. Yule, How orderly is ultrasonic atomization. Proc. of ILASS-Europe99,(1999).
    49. Electron Beam Evaporator. 2014/6/15; Available from: http://www.engr.uky.edu/~cense/equipment/ebeam.html.
    50. Hammer, B. and J. Norskov, Why gold is the noblest of all the metals. Nature, 376(6537), p. 238-240,(1995).
    51. Pliskin, W. and E. Conrad, Nondestructive determination of thickness and refractive index of transparent films. IBM Journal of Research and Development, 8(1), p. 43-51,(1964).
    52. Huen, T., Reflectance of thinly oxidized silicon at normal incidence. Applied optics, 18(12), p. 1927-1932,(1979).

    下載圖示 校內:2016-08-27公開
    校外:2016-08-27公開
    QR CODE