簡易檢索 / 詳目顯示

研究生: 陳美伶
Chen, Mei-Lin
論文名稱: 鎳鐵氧磁體及脫硫渣誘導H2O2處理反應黑染料之研究
Treatment of Reactive Black 5 by nickel ferrite and desulfurization slag induced H2O2 process
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 反應黑染料脫硫渣電鍍污泥鎳鐵氧磁體類芬頓法
外文關鍵詞: Reactive Black 5 dye, Desulfurization slag, Electroplating sludge, Nickel ferrite, Fenton-like
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來染料朝著抗光解、抗氧化等功能性發展,使得染料分子組成益趨複雜,因製造與使用過程中,染料可能會被釋放到環境中造成污染,故解決染料廢水問題乃重要的研究課題。電鍍污泥中富含銅、鋅、鎳、鉻、鐵等多種二價/三價金屬具鐵氧磁體化之潛勢,脫硫渣含有豐富元素鐵及鐵氧化物,兩者皆具有誘發類芬頓(Fenton-like)反應潛力。本研究利用脫硫渣及鐵氧磁體作為反應劑,探討其誘發H2O2產生Fenton-like反應處理反應黑染料(Reactive Black 5, RB5)之可行性,藉此提升脫硫渣及鐵氧磁體之資材化位階。

    研究結果發現,當RB5濃度為50 mg/L時,無論以脫硫渣或鎳鐵氧磁體誘發Fenton-like反應處理RB5之合適條件皆為pH=2、H2O2濃度為60mg/L。以礦化效率而言,在反應時間達24小時,以NiFe2O4(63%)優於脫硫渣(23%)。在鐵氧磁體應用方面,當燒結溫度越高、持溫持間越長,合成之NiFe2O4晶相強度越高,對RB5之脫色及礦化效率越佳,其中以燒結溫度1000℃且持溫10小時為Fenton-like反應處理RB5之最適鐵氧磁體化條件。以電鍍污泥經鐵氧磁體化後粉體,進行Fenton-like反應1 小時後,RB5可完全脫色,且反應後溶液中重金屬僅溶出微量,可知高溫鐵氧磁體法不僅可有效穩定電鍍污泥中重金屬,燒成熟料更具有觸媒效果。

    在材料穩健性試驗方面,以電鍍污泥合成之鐵氧磁體顆粒,利用Fenton-like反應處理RB5,即使經10次重複試驗,其去除RB5效果仍維持穩定,當反應時間達6 小時,RB5可完全脫色,且礦化效率高,反應過程中僅少量Fe溶出。而脫硫渣對RB5之脫色效率略低於電鍍污泥合成之鐵氧磁體,其礦化效率則隨著重複試驗次數增加而降低,且脫硫渣中Fe於試驗中大量溶出。綜合而言,脫硫渣及電鍍污泥合成之鐵氧磁體皆具有良好的Fenton-like觸媒效果,為環境友善之再生觸媒。因脫硫渣Fe大量釋出,反應速率快,建議應用於批次處理。而電鍍污泥合成之鐵氧磁體於反應過程中穩定,Fe幾乎不溶,具有作為透水性催化牆材料潛力,建議可應用於現地長期性處理污染物。

    The functional development of dye, such as anti-photolysis and anti-oxidation, increased the complexity of dye molecule composition in recent years. During the manufacturing process, dye may be released to the environment and causes pollution, therefore solving the problem of dye polluted wastewater is an important research topic. Electroplating sludge (EPS) is rich in copper, zinc, nickel, chromium, iron and other divalent / trivalent metals that contribute to its potential for ferrite synthesis; while desulfurization slag (DS slag) contains sufficient iron and iron oxides. Both EPS and DS slag have the potential to induce Fenton-like reaction. In this study, DS slag and ferrite were used as reactant to investigate their inductivity on H2O2 to generate Fenton-like reaction together with their feasibility on Reactive Black 5 (RB5) degradation so as to enhance the status of DS slag and ferrite in the field of materialization.

    Results showed with 50 mg/L concentration of RB5, regardless of using DS slag or nickel ferrite induced H2O2 to generate Fenton-like reaction on degradation of RB5, the appropriate reaction parameters are at pH= 2, concentration of H2O2 = 60 mg/L. In terms of mineralization efficiency, NiFe2O4 (63%) is better than DS slag (23%) when reaction time was up to 24 hours. In ferrite application, sintered NiFe2O4 had higher intensity of crystallization with higher sintering temperature and longer retention time; they also showed better performance in decoloration of RB5 and in mineralization efficiency. Sintering temperature of 1000℃ and retention time of 10 hours were appropriate conditions of ferritization in generating Fenton-like reaction for degradation of RB5. Powder from ferritization of EPS could decolorize RB5 completely with Fenton-like reaction for 1 hour. After catalytic reaction, leaching of heavy metals in solution was insignificant. High-temperature ferritization not only could effectively stabilize heavy metals in EPS, but also had distinctive catalytic effect after clinkering.

    As for material stabilization properties, ferrite particles synthesized from EPS degrading RB5 by Fenton-like reaction showed stability in RB5 removal even after 10 cycles of experiment, RB5 was completely decolorized after 6 hours of reaction time with high mineralization efficiency and only resulted in a small amount of Fe leaching. However, decoloration of RB5 using DS slag showed slightly lower removal efficiency than EPS synthetic ferrite, its mineralization efficiency decreased with increasing duplicate tests and released a large number of Fe element. It is concluded that DS slag and EPS synthetic ferrite were effective Fenton-like catalysts as well as environmental friendly renewed catalyst. Due to large number of Fe leaching and the high reaction rate of DS slag; it is recommended to apply DS slag in batch treatment or processing. Ferrite synthesized from EPS was stable during the reaction, and leaching of Fe was barely observed; thus it is a potential catalytic material that can be utilized in permeable catalytic barrier, it is recommended to apply in long-term pollutants treatment in situ.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 1-1研究動機與目的 1 1-2研究內容 2 第二章 文獻回顧 4 2-1染料廢水、脫硫渣及電鍍污泥特性與處置現況 4 2-1-1染料廢水產源特性及其相關處理技術 4 2-1-2脫硫渣產源特性及其相關處理技術 10 2-1-3電鍍污泥產源特性及相關處理技術 12 2-2鐵氧磁體於環境工程上之應用 16 2-2-1鐵氧磁體晶體結構與特性 16 2-2-2鐵氧磁體之合成方法 18 2-2-3鐵氧磁體程序應用於重金屬之穩定 25 2-2-4鐵氧磁體產物之資材化應用 26 2-3 Fenton-like應用於有機物之去除 28 2-3-1 Fenton-like法之原理 28 2-3-2影響Fenton-like反應之因素 32 2-4小結 38 第三章 實驗材料、設備與方法 39 3-1研究架構及實驗流程 39 3-2實驗材料與設備 42 3-2-1實驗材料 42 3-2-2實驗設備 43 3-3實驗方法 43 3-3-1樣品製備 43 3-3-2鐵氧磁體化程序 44 3-3-3熟料特性分析 44 3-3-4染料脫色與礦化實驗 49 3-3-5耐久性試驗 51 第四章 實驗結果與討論 56 4-1脫硫渣及電鍍污泥之特性分析 56 4-1-1脫硫渣基本特性分析 56 4-1-2電鍍污泥基本特性分析 58 4-1-3小結 59 4-2 Fenton-like影響因子對脫硫渣及NiFe2O4誘導H2O2處理RB5之影響 60 4-2-1 Fenton-like影響因子對脫硫渣誘導H2O2處理RB5之影響 60 4-2-2 Fenton-like影響因子對NiFe2O4處理RB5之影響 67 4-2-3小結 73 4-3鐵氧磁體合成條件對Fenton-like觸媒效果之影響 74 4-3-1燒結溫度及持溫時間對晶相之影響 74 4-3-2電鍍污泥合成鐵氧磁體處理RB5之探討 82 4-3-3小結 87 4-4脫硫渣及鎳鐵氧磁體Fenton-like反應特性之探討 88 4-4-1脫硫渣及鎳鐵氧磁體Fenton-like反應之特性 88 4-4-2耐久性試驗 92 4-4-3小結 99 第五章 結論與建議 100 5-1結論 100 5-2建議 101 參考文獻 102 表目錄 表2-1染整業主要污染物質之來源 5 表2-2典型染整廢水水質特性 6 表2-3脫硫渣與轉爐石之元素組成 11 表2-4有害事業廢棄物(污泥)產量統計 15 表2-5可合成鐵氧磁體之金屬種類 17 表2-6不同鐵氧磁體合成方法之比較 21 表2-7 Fenton法與Fenton-like氧化法之比較 30 表2-8 Fenton-like應用於染料之研究 31 表4-1脫硫渣元素組成 57 表4-2電鍍污泥元素組成及TCLP測試結果 58 表4-3不同H2O2濃度對DS slag去除RB5色度之影響 62 表4-4電鍍污泥生料及其燒成熟料之TCLP溶出特性分析 84 表4-5電鍍污泥燒成熟料進行催化反應後溶液中之重金屬濃度 87 表4-6脫硫渣及鐵氧磁體進行Fenton-like反應後溶液中之重金屬濃度 91 表4-7 DS slag及EPS-ferrite進行催化反應後溶液中之重金屬濃度 96 圖目錄 圖2-1電鍍廢水處理流程圖 12 圖2-2尖晶石結構 16 圖2-3鐵系之Eh-pH平衡圖 34 圖3-1研究架構及流程圖 41 圖3-2布拉格繞射關係圖 45 圖3-3 X光粉末繞射儀之構造 46 圖3-4 RB5染料之檢量線 53 圖3-5過氧化氫之分光光度器校正曲線 54 圖3-6亞鐵離子之分光光度器校正曲線 55 圖4-1脫硫渣粒徑分佈之磁性分佈 57 圖4-2 pH值對DS slag處理RB5脫色之影響 61 圖4-3單獨H2O2對RB5之去除效果 62 圖4-4單純DS slag對RB5之脫色效率 63 圖4-5 DS slag劑量對RB5脫色之影響 64 圖4-6染料濃度對DS slag處理RB5脫色之影響 65 圖4-7 pH值對NiFe2O4處理RB5脫色之影響 68 圖4-8不同H2O2濃度對NiFe2O4處理RB5脫色之影響 69 圖4-9單純NiFe2O4對RB5之脫色效率 70 圖4-10鐵氧磁體劑量對RB5之脫色影響 71 圖4-11染料濃度對NiFe2O4處理RB5之影響 73 圖4-12燒結溫度800℃不同持溫時間合成NiFe2O4之XRD晶相分析 75 圖4-13燒結溫度900℃不同持溫時間合成NiFe2O4之XRD晶相分析 75 圖4-14燒結溫度1000℃不同持溫時間合成NiFe2O4之XRD晶相分析 76 圖4-15不同NiFe2O4合成溫度對RB5脫色之影響 76 圖4-16 NiFe2O4合成溫度對RB5脫色及礦化效率之影響 77 圖4-17不同NiFe2O4持溫時間對RB5脫色之影響 79 圖4-18不同燒結條件合成NiFe2O4之晶相相對強度值及其對RB5之礦化效率81 圖4-19調質與未調質電鍍污泥鐵氧磁體化之XRD晶相分析 83 圖4-20電鍍污泥鐵氧磁體化之產物對RB5之脫色效率 86 圖4-21電鍍污泥鐵氧磁體化之產物對RB5之礦化效率 86 圖4-22脫硫渣及鐵氧磁體之RB5脫色效率 89 圖4-23脫硫渣及鐵氧磁體對RB5之礦化效率 90 圖4-24脫硫渣及鐵氧磁體溶出之total Fe及Fe2+濃度 91 圖4-25耐久性試驗中DS slag對RB5之脫色效率 93 圖4-26耐久性試驗中DS slag對RB5之礦化效率 93 圖4-27耐久性試驗中EPS-ferrite對RB5之脫色效率 94 圖4-28耐久性試驗中EPS-ferrite對RB5之礦化效率 95 圖4-29 DS slag溶出之total Fe及Fe2+濃度 97 圖4-30 EPS-ferrite溶出之total Fe及Fe2+濃度 98

    Ahmed, M. A., Alonso, L., Palacios, J. M., Cilleruelo, C., and Abanades, J. C., Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization, Sol. Sta. Ion., Vol. 138, pp. 51-62, 2000.

    Albuquerque, A. S., Ardisson, J. D., Macedo, W. A. A., López, J. L., Paniago, R., and Persiano, A. I. C., Sturcture and magnetic properties of nanostructured Ni-ferrite, Journal of Magnetism and Magnetic Materials, Vol. 226-230, pp. 1379-1381, 2001.

    Balmer, M. E., and Sulzberger, B., Atrazine Degradation in irradiated iron/oxalate systems: Effects of pH and oxalate, Environmental Science & Technology, Vol. 33, pp. 2418, 1999.

    Bali, U., Catalkaya, E. C., and Sengul, F., Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+ ; a comparative study, Journal of Hazardous Materials, Vol. 114, pp. 159, 2004.

    Barth, E. F., An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment, J. Hazard.
    Mater., Vol. 24, pp. 103-109, 1990.

    Bricka, R. M., Investigation and evaluation of the performance of solidified cellulose and starch xanthate heavy metal sludges, U.S. army corps of engineers waterway
    experiment station, technical report EL, 88-5, 1988.

    Brown, R. A., Robonson, D., Skladany, G.., and Loeper, J., Response to Naturally Occurring Organic Material: Permanganate versus Persulfate, Proceeding of Consoil, International FZK/TNO Conference on Contaminated Soil, pp. 1692-1698, 2003.

    Carlton, H. L., Shebl, M. A. A., and Watts, R. J., Development of an injection for in situ catalyzed peroxide remediation of contaminated soil, Hazardous Waste and Hazardous Materials, Vol. 2, pp. 15-25, 1995.

    Campbell, S. J., Kaczmarek, W. A., and Wang, G. M., Mechanochemical transformation of hematite to magnetite, Nanostructured Materials, Vol. 6, pp. 735-738, 1995.

    Cheng, K. Y., Controlling mechanisms of metal release from cement-based waste form in acetic acid solution, Ph.D. Disseration, University of Cincinnati, Cincinnati, OH, 1991.

    Chen, H. T., Tsai, M. S., Chang, J. U., Lin, T. F., Wu, C. C., and Wu Chen, Y. S., Integration of Fenton Process and Ferrite Process in BTA/Zn Wastewater Treatment., Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, 2003.

    Chen, P. H., and Watts, R. J., Determination of rates of hydroxyl radical generation in mineral-catelyzed Fenton-like oxidation., Journal of the Chinese Institute of Environmental Eengineering, Vol. 10, pp. 201-208, 2000.

    Chiou, C. S., Chang, C. F., Chang, C. Y., Wu, Y. P., Chang, C. T., Li, Y. S., and Chen, Y.H., Mimeralization of polyethylene glycol in aqueous solution by hydrogen peroxide with basic oxygen furnace slag, Environmental Technology, Vol. 25, pp. 1357-1365, 2004.

    Chiou, C. S., Chang, C. F., Chang, C. T., Shie, J. L., and Chen, Y. H., Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide, Chemosphere, Vol. 62, pp. 788–795, 2006.

    Chung, K. T., and Stevens, S. E., Degradation of azo dyes by environmental microorganisms and helminthes, Environ. Toxicol Chem., Vol. 12, pp. 2121-2132, 1993.

    Cullity, B. D., and Stock, S. R., Elements of X-Ray Differaction, Prentice Hall, New Jersey, 2001.

    Dhananjeyan, M. R., Mielczarski, E., Thampi, K. R., Buffat, P., Bensimon, M., Kulik, A., Mielczarski, J., and Kiwi, J., Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films, J. Phys. Chem., B 105, pp. 1246–1255, 2001.

    Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., and Chaudhuri, B., Chemical oxidation of methylene blue using a Fenton-like reaction, Journal of Hazardous Materials, Vol. 84, pp. 57-71, 2001.

    Ebelmen, J. J. Ann., Vol. 57, pp. 331, 1846.

    Fenton, H. J. H., Oxidation of Tartaric Acid in Presence of Iron, Journal of Chemical Society, Vol. 65, pp. 889-910, 1894.

    Fernandez, J., Bandara, J., Lopez, A., Buffar, Ph., and Kiwi, J., Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes, Langmuir, Vol. 15, pp. 185–192, 1999.

    Gates, D. D., and Spelliy, R. L., In-situ chemical oxidation of trichloroethylene using hydrogen peroxide, Journal of Environmental Engineering, Vol. 121, pp. 639-644, 1995.

    Hsing, H. J., Chiang, P. C., Chang, E. E., and Chen, M. Y., The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study, Journal of Hazardous Materials, Vol. 141, pp. 8-16, 2007.

    Hsueh, C. L., Huang, Y. H., Wang, C. C., and Chen, C. Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, Vol. 58, pp. 1409–1414, 2005.

    Hsueh, C. L., Huang, Y. H., Wang, C. C., and Chen, C. Y., Photoassisted Fenton Degradation of Nonbiodegradable Azo-dye(Reactive Black 5) Over a Novel Supported Iron Oxide Catalyst at Neutral pH, Journal of Molecular Catalysis A: Chemical, Vol. 254, pp. 78-86, 2006.

    Hu, J., and Chen, G., Removal Cr(VI) by magnetite nanoparticles, Water Sci.Technol., Vol. 150, No. 12, pp. 139-146, 2004.

    Hu, J., Lo, M. C., and Chen, G. H., Comparative study of various magnetic nanoparticles for Cr(Ⅵ) removal, Separation and Purification Technology, Vol. 56, pp. 249-256, 2007.

    Illés, E., Tombácz, E., and Colloids A. S., The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite, Colloids and Surfaces A, Physicochemical and Engineering Aspects, Vol. 230, pp. 99-109, 2004.

    Illés, E., and Tombácz, E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Coll. Int. Sci., Vol. 295, pp. 115-123, 2006.

    Jsuji, T., Takada, T., Kiyama, M., and Sugano, I., Invention of ferrite formation for removing toxic metals in drain water, Denshi Zairyo, Vol. 12, No. 9, pp. 70-73, 1973.

    Kakarla, K. C., and Watts, R. J., Depth of Fenton-like oxidation in remediation of surface soil, Journal of Environmental Engineering, Vol. 123, pp. 11-17, 1997.

    Kang, H.W., Chung, W. S., and Muryama, T., Effect of iron ore size on kinetics of gaseous reduction, ISIJ Int., Vol. 38, No. 2, pp. 109-115, 1998.

    Kang, Y. W., and Hwang, K. Y., Effect of reaction conditions on the oxidation efficiency in the Fenton process, Water Res., Vol. 34, pp. 2786–2790, 2000.

    Kavitha, V., and Palanivelu, K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, Vol. 55, pp. 1235, 2004.

    Kawatra, S. K., and Ripke, S. J., Sintering of magnetite pellets under oxidizing, neutral and reducing atmospheres, Miner. Metall. Process, Vol. 20, No. 4, pp. 165-170, 2003.

    Kazinczy, B., Kótai, L., Gács, I., Sajó, I. E., Sreedhar, B., and Lázár, K., Study of the preparation of zinc(II) ferrite and ZnO from zinc- and iron-containing industrial wastes, Ind. Eng. Chem. Res., Vol. 42, pp. 318-322, 2003.

    Kim, T. H., Park, C. H., Yang, J. M., and Kim, S. Y., Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation., Journal of Hazardous Materials, Vol. 112, pp. 95, 2004.

    Kodama, T., Watanabe, Y., Miura, S., Sato, M., and Kitayama, Y., Reactive and selective redox system of Ni(II)-ferrite for a two-step CO and H2 production cycle from carbon and water, Energy, Vol. 21, No. 12, pp. 1147-1156, 1996.

    Kong, S. H., and Watts, R. J., Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere, Vol. 37, pp. 1473-1482, 1998.

    Kuo, W. G., Decolorizing dye wastewater with Fenton’s reagent, Water Research, Vol. 26, pp. 881, 1992.

    Leclerc, E. M., and Jean, M. L., Hydrometallurgical extraction of zinc from zinc ferrites, Hydrometallurgy, Vol. 70, pp. 175–183, 2003.

    Lee, Y. H., Yoon, J. Y., Jeong, J, S., Lee, C. H., and Kim, S. Y., Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process, Chemosphere, Vol. 51, pp. 901, 2003.

    Lin, S. H., and Lo, C. C., Fenton process for treatment of desizing wastewater, Wat. Res., Vol. 31, No. 8, pp. 2025-2056, 1993.

    Lindsey, M. E., and Tarr, M. A., Quantiation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, Vol. 41, pp. 409-417, 2000.

    Lucas, M. S., and Peres, J. A., Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes and Pigments, Vol. 71, pp. 236-244, 2006.

    Lu, M. C., Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite, Chemosphere, Vol. 40, pp. 125-130, 2000.

    Marco, S., Lucas, and Jose’ A. Peres, Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes and Pigments, Vol. 71, pp. 236-244, 2006.

    McCurrie, R. A., Ferromagnetic Materials: structure and properties, Academic Press Inc., New York, 1994.

    Meric, S., Kaptan, D., and Olmez, T., Color and COD removal from wasterwater containing Reactive Black 5 using Fenton’s oxidation process, Chemosphere, Vol. 54, pp. 435, 2004.

    Qu, J. H., Research progress of novel adsorption processed in water purification: A review, Journal of Environmental Sciences, Vol. 20, pp. 1-13, 2008.

    Rashad, M. M., Fouad, O. A., Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO, Mat. Che. Phy., Vol. 94, pp. 365-370, 2005.

    Rodriguez, M., Sarria, V., Esplugas, S., and Pulgarin, C., Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 151, pp. 129-135, 2002.

    Sevimli, M. F., and Kinacl, C., Decolorization of textile wastewater by ozonation and Fenton’s process, Water Sci. Technol., Vol. 45, No. 12, pp. 279–286, 2002.

    Sheng, H. L., and Cho, C. L., Fenton process for treatment of desizing wastewater, Water Res., Vol. 31, pp. 2050–2056, 1997.

    Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L., and Lowe, K. S., Principle and practices of in situ chemical oxidation using permanganate, Battelle Press, 2001.

    Spadaro, J. T., Isabelle, L., and Renganathan, V., Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation, Environ. Sci. Technol., Vol. 28, pp.1389–1393, 1994.

    Strickland, A. F., and Perkins, W. S., Decolorization of continuous dyeing wasterwater by ozanation, Textile Chemist and Colorist, Vol. 27, No. 5, pp. 11, 1995.

    Stumm, W., Chemistry of the Solid-Water Interface, John Wiley & Sons. InC., 1992.

    Tang, W. Z., and Hung, C. P., The effect of chlorine position of chorinated phenols on their dechlorination kinetics by Fenton’s reagent, Waste Management, Vol. 15, pp. 615-622, 1995.

    Tsai, T. T., and Kao, C. M., Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag, Journal of Hazardous Materials, Vol. 170, pp. 466–472, 2009.

    Tsai, T. T., Kao, C. M., Weng, C. H. and Liang, S. H., Treatment of TCE-contaminated groundwater using Fenton-Like oxidation activated with basic oxygen furnace slag, Journal of Environmental Engineering, Vol. 136, pp.3, 2010.

    Wa, V. W., Degradation of benzene by different types of ferrite in permeable catalytic barriers, Department of Environmental Engineering, National Cheng Kung University, 2010.

    Walling, C., Kato, S. I., The oxidation of alcohols by Fenton’s reagent. The effect of copper ion. J. Am. Chem. Soc. Vol. 93, pp. 4275–4281, 1971.

    Wang, Y., Linag, Z., Yuan, X., and Xu, Y., Preparation of cellular iron using wastes and its application in dyeing wastewater treatment, J. Porous Mater., Vol. 12, pp. 225-232, 2005.

    Wang, K. S., Sun, C. J., Liu, C. Yu., Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash, Waste Management, Vol. 21, pp.85-91, 2001.

    Watts, R. J., Udell, M. D., and Rauch, P. A., Treatment of pentachlorophenol contaminated soil using Fenton’s reagent, Hazardous Waste and Hazardous Materials, Vol. 7, pp. 335-345, 1990.

    Watts, R. J., Kong, S. H., Marc, D., and William, T. B., Oxidation of sorbed hexachlorobenzene in soils using catalyzed hydrogen peroxide, Journal of Hazardous Materials, Vol.39, pp. 33-47, 1994.

    Watts, R. J., and Stanton, P. C., Minerlization of sorbed and NAPL-phase by catalyzed hydrogen peroxide, Water Research, Vol. 33, pp. 1405-1414, 1999.

    Watts, R. J., Daniel, R. H., Alexander, P. J., and Amy, L. T., A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reaction, Journal of Hazardous Materials, Vol. 76, pp. 73-89, 2000.

    Wu, R., and Qu, J. H., Removal of water-soluble azo dye by the magnetic material MnFe2O4, Journal of Chemical Technology and Biotechnology, Vol. 80, pp. 20-27, 2005.

    Xu, S. R., Zhao, Z. Y., Li, X. Y., and Gu, J. D., Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent, Chemosphere, Vol. 55, pp. 73-79, 2004.

    Yang, L. X., Matthews, E., Oxidation and sintering of magnetite ore under oxide Conditions, ISIJ Int., Vol. 37, No. 9, pp. 854-861, 1997.

    Yang, L. X., and Loo, C. E., Structure of sinters formed from complex chinese iron ores, ISIJ Int., Vol. 37, No. 5, pp. 449-457, 1997.

    Yi, X., Yitai, Q., Jing, L., Zuyao, C., and Li, Y., Hydrothermal preparation and characterization of ultrafine powders of ferrite spinels MFe2O4(M=Fe, Zn and Ni), Mater. Sci. Eng., Vol. 34, pp. 1-3, 2005.

    Yue, Z., Guo, W., Zhou, J., Gui, Z., and Li, L., Synthesis of nanocrystalline by sol-gel combustion process: the influence of pH value of solution, J. Magn. Magn.
    Mater., Vol. 270, pp. 216-223, 2004.

    Zepp, R. G., Faust, B. C., and Holgne, J., Hydroxyl Radical Formation in Aqueous Reactions (pH 3-8) of Iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction, Environmental Science and Technology, Vol. 26, pp. 313, 1992.

    Zimmermann, T., Kulla, H. G., and Leisinger, T., Properties of purified Orange II azoreductasd, the enzyme initiating azo dye degradation by Pseudomonas KF46, European Journal of Biochemistry, Vol. 129, pp. 197-203,1982.

    李公哲,污泥燒結/熔融之資源化整合型研究─總計畫及子計畫三:工業廢水污泥/淨水污泥之熔融資源化研究(2/3),2002年。

    吳忠柱、傅君彥,灰渣吸附廢水中有機物可行性之研究,國立成功大學第七屆全校論文比賽作品集,第124-134頁,1996年。

    邱義豐、牟全錄,中鋼公司自產脫硫渣資源化研究,第二屆工業減廢技術與策略研討會論文集,第19~1-19~12頁,1993年。

    林家寧,利用奈米級氧化鎂破壞性吸附染料廢水之反應機制,國立中山大學環境工程研究所碩士論文,2006年。

    周沅錞,燒結條件對鐵礦泥鐵氧磁體化之影響,國立成功大學環境工程研究所碩士論文,2006年。

    周煒承,重金屬污泥高溫燒製鐵氧磁體之穩定研究,國立成功大學環境工程研究所碩士論文,2007年。

    柯家宇,重金屬污泥鐵氧磁體安定化之研究,國立成功大學環境工程研究所碩士論文,2004年。

    陳文泉,重金屬廢水鐵氧磁體法處理之基礎研究,國立成功大學礦冶及材料科學研究所碩士論文,1992年。

    陳世哲,以水化後針鐵礦催化過氧化氫分解2-氯酚,國立交通大學環境工程研究所碩士論文,1998年。

    陳佩茹,Fenton相關程序去除色度與DOC之研究,淡江大學水資源及環境工程學系碩士論文,2009年。

    涂耀仁、張健桂、林淑婷、黃郁仁,由鐵氧磁體程序污泥產製奈米級觸媒之研發,行政院國家科學委員會專題研究計劃成果報告,計畫編號: NSC92-2211-E-110-006,2004年。

    張毓寬,鉻污泥資源化基礎研究,國立成功大學資源工程研究所碩士論文,2002年。

    張祖恩、蔣立中、盧幸成、施百鴻、張益國,重金屬污泥作為水泥替代原料可
    性研究,第十八屆廢棄物處理技術研討會,2003年。

    張博荀,H2O2/Fe2+化學氧化法處理反應性染料Black B之研究,國立成功大學化學工程研究所碩士論文,2004年。

    黃契儒,電鍍廢水鐵氧磁體化及前處裡研究,國立成功大學礦冶及材料科學研究所碩士論文,1993年。

    黃淑惠,Sol-Gel 法制備鑭系鈣鈦礦膜之磁阻特性,國立成功大學材料科學及工程研究所碩士論文,2001年。

    黃鈺軫、杜秋慧、宮敏、林忠義、林傅倫、張景舜,實驗室重金屬廢液鐵氧磁體化處理之研究,第二十八屆廢水處理技術研討會,2003年。

    黃坤祥,粉末冶金學,中華民國粉末冶金協會,2003年。

    巢志成、陳明德、王鑑恆,汙泥之焚化處理技術,工業汙染防治,64卷,第138-155頁,1997年。

    楊士瑩,黏結劑PVA 對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響,國立成功大學材料科學及工程研究所碩士論文,2001年。

    樓基中、張健桂、涂耀仁,以鐵氧磁體程序處理實驗室廢液,第十八屆廢棄物處理技術研討會,2003年。

    蔡宏志,Photo-Fenton法處理反應性偶氮染料Black B與酚之研究,國立成功大學化學工程研究所碩士論文,2005年。

    魏豪正,草酸於異相光催化系統降解偶氮染料之研究,國立成功大學化學工程研究所碩士論文,2005年。

    工業污染防治,第49期,1994年。

    化工環保,第20期,第14-18頁,2000年。

    台灣區染料顏料工業同業公會,海關進出口統計,2006年。

    電鍍業資源化應用技術手冊,2002年。

    經濟部工業局,2002年。

    環保署,「印染整理業」、「農藥業」、「印刷電路板業」及「晶圓製造及半
    導體製造業」等四行業之廢水中特定物質前處理及管理制度評估計畫,第4-1-4-57頁,2003年。

    環保署事業廢棄物管制中心,2009年。

    環檢所「水中總有機碳檢測方法-燃燒/紅外線測定法NIEA W530.51C」。

    環檢所「事業廢棄物毒性特性溶出程序,NIEA R201.14C」。

    下載圖示 校內:2014-06-29公開
    校外:2014-06-29公開
    QR CODE