研究生: |
廖冠旻 Liao, Guan-Min |
---|---|
論文名稱: |
淨水程序中粉狀活性碳對MIB/geosmin之吸附研究:模式模擬與不同規模實驗之比較 Adsorption of MIB/geosmin by powdered activated carbon (PAC) in conventional water treatment:From bench-scale HSDM prediction to full-scale samplings |
指導教授: |
林財富
Lin, Tsair-Fuh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | MIB 、geosmin 、粉狀活性碳(PAC) 、均勻表面擴散模式(HSDM) 、淨水廠 |
外文關鍵詞: | MIB, geosmin, Powdered activated carbon (PAC), Homogeneous surface diffusion model (HSDM), Full-scale WTP |
相關次數: | 點閱:116 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討粉狀活性碳(PAC)對於兩種水中臭味物質MIB和geosmin於環境水體中的吸附去除效果。期望以舊有實驗室數據,透過均勻表面擴散模式(HSDM)所計算出的預測結果,來推估現有實驗中短時間內粉狀活性碳吸附二臭味物質的效率。同時也比較在不同規模實驗中(實驗室瓶杯試驗、模廠實驗以及淨水廠實場採樣)臭味物質的去除差異。實驗與採樣均於南澳洲阿德雷德地區進行,利用固相微萃取技術結合氣相層析質譜儀分析臭味濃度。
此次實驗室與模廠規模實驗結果中發現,二不同規模實驗的臭味去除百分比結果十分相似,可得到使用相同粉狀活性碳劑量時,MIB和geosmin的百分比去除率與二臭味物質在自然水體當中的初始濃度無關。然而現在的實驗數據顯示,過去HSDM所推算出的吸附結果,並不能有效預測活性碳的吸附效能。本實驗也觀察到在低濁度原水的條件下,淨水程序中使用混凝劑所形成的膠羽,並不會明顯阻礙活性碳吸附臭味物質的效率。這表示在本次實驗中,添加混凝劑而造成混凝膠羽包覆活性碳表面,並不是HSDM預測現有實驗去除效率不準確的主要原因。淨水廠採樣結果指出,實廠規模中的臭味吸附效率,跟實驗室與模場實驗相比十分不一致,也與HSDM所預測的結果不相符。其差異可能來自實廠淨水程序中不均勻的攪拌與潛在水力短流的發生,造成活性碳與臭味物質接觸不充分,因而導致和實驗與模式模擬結果的差異。此次的研究結果觀察到目前實廠淨水程序對於臭味去除管理與預測的不足,顯示需要更準確跟即時的MIB/geosmin去除管理技術來面對飲用水中的臭味問題。
Adsorption of two taste and odour (T&O) compounds, 2-methylisoborneol (MIB) and geosmin in the presence of natural organic matter (NOM) by powdered activated carbon (PAC) were investigated in bench, pilot-scale experiments and field samplings at full-scale water treatment plants (WTP). Homogeneous surface diffusion model (HSDM) was used to simulate the adsorption data from the past, ensuing prediction results were developed and utilised for verifying current experimental data. Concentration of MIB and geosmin were measured using solid-phase microextraction (SPME) with gas chromatography mass-spectrometer (GC-MS), and percent removal of T&O compounds are independent of initial concentration could be found in the results of bench and pilot trials. In low natural turbidity water, addition of alum and subsequent formation of coagulant flocs appeared to have no obviously adverse impact on kinetics adsorption of MIB/geosmin. This implied the coagulant flocs may not be the major factor contributed the discrepancy between prediction result, which established from the jar tests with applying PAC only, and experimental data. In our experiments, HSDM prediction overestimated the current adsorption efficiency of PAC, with prediction displayed lower percent remaining than the result of experiments and full-scale samplings. Although good corresponding performance of MIB/geosmin removal can be observed between bench and pilot-scale, the results from WTP were not the case. Unpredictable MIB/geosmin concentration was revealed throughout the full-scale water treatment chains, which weakly corresponded to both scale experimental results as well as HSDM prediction, and indicates the unknown mixing and hydraulic profile within plant-scale processes. Findings in our study necessitate more robust managing or modelling approaches for immediate response to taste and odour issues.
Altmann, J., Zietzschmann, F., Geiling, E.L., Ruhl, A.S., Sperlich, A., Jekel, M., 2015. Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater. Chemosphere 125, 198–204. doi:10.1016/j.chemosphere.2014.12.061
Bruce, D., Westerhoff, P., Brawley-Chesworth, A., 2002. Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona. J. Water Supply Res. Technol. - AQUA 51, 183–197.
Butter, R., 1998. Review of Documents Investigating Taste and Odor Abatement Options: City of Chicago Department of Water, In AWWARF Taste and Odor Workshop, July 23-24, 1998, Chicago, I11.
Chen, G., Dussert, B.W., Suffet, I.H., 1997. Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water. Water Res. 31, 1155–1163. doi:10.1016/S0043-1354(96)00362-4
Chen, J.J., Yeh, H.H., Tseng, I.C., Lin, T.F., Lai, W.L., 2002. Upgrading conventional treatment processes for water quality improvement - A pilot study. Water Sci. Technol. Water Supply 2, 165–171.
Chiu, Y., Yen, H., Lin, T., 2016. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environ. Res. 151, 618–627. doi:10.1016/j.envres.2016.08.034
Chow, C.W.K., Drikas, M., House, J., Burch, M.D., Velzeboer, R.M.A., 1999. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res. 33, 3253–3262. doi:10.1016/S0043-1354(99)00051-2
Chow, C.W.K., House, J., Velzeboer, R.M.A., Drikas, M., Burch, M.D., Steffensen, D.A., 1998. The effect of ferric chloride flocculation on cyanobacterial cells. Water Res. 32, 808–814. doi:10.1016/S0043-1354(97)00276-5
Cook, D., Newcombe, G., Sztajnbok, P., 2001. The application of powdered activated carbon for MIB and geosmin removal: Predicting PAC doses in four raw waters. Water Res. 35, 1325–1333. doi:10.1016/S0043-1354(00)00363-8
Dionigi, C.P., Lawlor, T.E., McFarland, J.E., Johnsen, P.B., 1993. Evaluation of geosmin and 2-methylisoborneol on the histidine dependence of TA98 and TA100 Salmonella typhimurium tester strains. Water Res. 27, 1615–1618. doi:10.1016/0043-1354(93)90125-2
Dixon, M.B., Richard, Y., Ho, L., Chow, C.W.K., O’Neill, B.K., Newcombe, G., 2011. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms. J. Hazard. Mater. 186, 1553–1559. doi:10.1016/j.jhazmat.2010.12.049
Drikas, M., Chow, C.W.K., House, J., Burch, M.D., 2001. Using coagulation, flocculation, and settling to remote toxic cyanobacteria. J. Am. Water Works Assoc. 93, 100–111.
Elhadi, L.N.S., Huck, M.P., Slawson, M.R., 2006. Factors affecting the removal of geosmin and MIB in drinking water biofilters. J. AWWA 16, 381–389.
Fabris, R., Chow, C.W.K., Drikas, M., Eikebrokk, B., 2008. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res. 42, 4188–4196. doi:10.1016/j.watres.2008.06.023
Freeman, K.S., 2010. HARMFUL ALGAL BLOOMS: Musty Warnings of Toxicity. Environ. Health Perspect. 118(11), A473. doi:10.1289/ehp.6000.6.
Gardiner, E. R., 1973. Experience with powdered carbon for taste and odour control, In: Activated Carbon in Water Treatment, Water Res. Assoc. Conf., Univ. of Reading, England.)
Gillogly, T.E.T., Snoeyink, V.L., Elarde, J.R., Wilson, C.M., Royal, E.P., 1998a. 14C-MIB adsorption on PAC in natural water. J. Am. Water Work. Assoc. 90, 98–108.
Gillogly, T.E.T., Snoeyink, V.L., Holthouse, A., Wilson, C.M., Royal, E.P., 1998b. Effect of chlorine on PAC’s ability to adsorb MIB. J. Am. Water Work. Assoc. 90, 107–114.
Gillogly, T.E.T., Snoeyink, V.L., Newcombe, G., Elarde, J.R., 1999. A simplified method to determine the powdered activated carbon dose required to remove methylisoborneol, in: Water Science and Technology. pp. 59–64. doi:10.1016/S0273-1223(99)00538-7
Glaze, W.H., Schep, R., Chauncey, W., Ruth, E.C., Zarnoch, J.J., Aieta, E.M., Tate, C.H., McGuire, M.J., 1990. Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply. J. / Am. Water Work. Assoc. 82, 79–84. doi:10.2307/41292908
Gorham, P., McLachlan, J., Hammer, U. T., & Kim, W. K., 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb
Graham, M.R., Summers, R.S., Simpson, M.R., MacLeod, B.W., 2000. Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters. Water Res. 34, 2291–2300. doi:10.1016/S0043-1354(99)00390-5
Hnatukova, P., Kopecka, I., Pivokonsky, M., 2011. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: Effect of surface charge and interactions. Water Res. 45, 3359–3368. doi:10.1016/j.watres.2011.03.051
Ho, L., Barbero, A., Dreyfus, J., Dixon, D.R., Qian, F., Scales, P.J., Newcombe, G., 2013. Behaviour of cyanobacterial bloom material following coagulation and/or sedimentation. J. Water Supply Res. Technol. - AQUA 62, 350–358. doi:10.2166/aqua.2013.137
Ho, L., Dreyfus, J., Boyer, J., Lowe, T., Bustamante, H., Duker, P., Meli, T., Newcombe, G., 2012a. Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Sci. Total Environ. 424, 232–238. doi:10.1016/j.scitotenv.2012.02.025
Ho, L., Hoefel, D., Aunkofer, W., Meyn, T., Keegan, a., Brookes, J., Saint, C., Newcombe, G., 2006. Biological filtration for the removal of algal metabolites from drinking water. Water Sci. Technol. Water Supply 6, 153–159. doi:10.2166/ws.2006.064
Ho, L., Hoefel, D., Bock, F., Saint, C.P., Newcombe, G., 2007. Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 66, 2210–2218. doi:10.1016/j.chemosphere.2006.08.016
Ho, L., Newcombe, G., 2005. Effect of NOM, turbidity and floc size on the PAC adsorption of MIB during alum coagulation. Water Res. 39, 3668–3674. doi:10.1016/j.watres.2005.06.028
Ho, L., Sawade, E., Newcombe, G., 2012b. Biological treatment options for cyanobacteria metabolite removal - A review. Water Res. 46, 1536–1548. doi:10.1016/j.watres.2011.11.018
Hobson, P., Fazekas, C., House, J., Daly, R.I., Kildea, T., Giglio, S., Burch, M., Lin, T.-F., Chen, Y.-M., 2010. Tastes and Odours in Reservoirs (Research Report 73). Water Quality Research Australia, Adelaide, Australia, p. 96.
Huang, C., Benschoten, J.E.Van, Jensen, J.N., 1996. Adsorption kinetics of MIB and geosmin. J. Am. Water Work. Assoc. 88, 116–128.
Hussain, S., vanLeeuwen, J., Chow, C., Beecham, S., Kamruzzaman, M., Wang, D., Drikas, M., Aryal, R., 2013. Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: Coagulation adsorption and kinetics studies. Chem. Eng. J. 225, 394–405. doi:10.1016/j.cej.2013.03.119
Jung, S.W., Baek, K.H., Yu, M.J., 2004. Treatment of taste and odor material by oxidation adsorption. Water Sci. Technol. 49, 289–295.
Jüttner, F., Watson, S.B., 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 73, 4395–4406. doi:10.1128/AEM.02250-06
Knappe, D.R.U., Matsui, Y., Snoeyink, V.L., Roche, P., Prados, M.J., Bourbigot, M.M., 1998. Predicting the capacity of powdered activated carbon for trace organic compounds in natural waters. Environ. Sci. Technol. 32, 1694–1698. doi:10.1021/es970833y
Kommineni, S., Amante, K., Karnik, B., Sommerfeld, M., Dempster, T., 2009. Strategies for Controlling and Mitigating Algal Growth within Water Treatment Plants. Water Research Foundation, Denver, Colorado, USA.
Kopecka, I., Pivokonsky, M., Pivokonska, L., Hnatukova, P., Safarikova, J., 2014. Adsorption of peptides produced by cyanobacterium Microcystis aeruginosa onto granular activated carbon. Carbon N. Y. 69, 595–608. doi:10.1016/j.carbon.2013.12.072
Lai, W.-L., Yeh, H.-H., Tseng, I.-C., Lin, T.-F., Chen, J.-J., Wang, G.T., 2002. Conventional versus advanced treatment for eutrophic source water. J. Am. Water Work. Assoc. 94, 96–108.
Lalezary-Craig, S., Pirbazari, M., Dale, M.S., Tanaka, T.S., McGuire, M.J., 1988. Optimizing the Removal of Geosmin and 2-Methylisoborneol By Powdered Activated Carbon. J. / Am. Water Work. Assoc. 80, 73–80.
Lalezary, S., Pirbazari, M., McGuire, M.J., 1986a. Oxidation of five earthy-musty taste and odor compounds. Am. Water Work. Assoc. 78, 62–69.
Lalezary, S., Pirbazari, M., McGuire, M.J., 1986b. Evaluating activated carbons for removing low concentrations of taste- and odor-producing organics. J. / Am. Water Work. Assoc. 78, 76–82.
Li, Q., Snoeyink, V.L., Mariãas, B.J., Campos, C., 2003. Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res. 37, 773–784. doi:10.1016/S0043-1354(02)00390-1
Lin, T.F., Wong, J.Y., Kao, H.P., 2002. Correlation of musty odor and 2-MIB in two drinking water treatment plants in South Taiwan. Sci. Total Environ. 289, 225–235. doi:10.1016/S0048-9697(01)01049-X
Morran, J.Y., Drikas, M., Cook, D., Bursill, D.B., 2004. Comparison of MIEX treatment and coagulation on NOM character. Water Sci. Technol. Water Supply 4, 129–137.
Murshed, M.F., VanLeeuwen, J. a., Chow, C.W.K., Drikas, M., 2014. Modification of jar testing protocol combined with mEnCo model predicted dose to predict dissolved organic matter removal for surface water. Water Sci. Technol. Water Supply 14, 358–366. doi:10.2166/ws.2013.199
Myers, A.L., Prausnitz, J.M., 1965. Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127. doi:10.1002/aic.690110125
Najm, I.N., Snoeyink, V.L., Lykins , Benjamin W., J., Adams, J.Q., 1991a. Using Powdered Activated Carbon: A Critical Review. J. Am. Water Work. Assoc. 83, 65–76. doi:10.2307/41293123
Najm, I.N., Snoeyink, V.L., Richard, Y., 1991b. Effect of Initial Concentration of a SOC in Natural Water on Its Adsorption by Activated Carbon. J. Am. Water Work. Assoc. 57–63.
Najm, I. N., Snoeyink, V. L., Galvin, T. L., & Richard, Y. 1991c. Control of organic compounds with powdered activated carbon. In Control of organic compounds with powdered activated carbon. AWWAR.
Najm, I.N., Snoeyink, V.L., Suidan, M.T., Lee, C.H., Richard, Y., 1990. Effect of particle size and background natural organics on the adsorption efficiency of PAC. J. / Am. Water Work. Assoc. 82, 65–72.
Newcombe, G., Morrison, J., Hepplewhite, C., 2002a. Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption. Carbon N. Y. 40, 2135–2146.
Newcombe, G., Morrison, J., Hepplewhite, C., Knappe, D.R.U., 2002b. Simultaneous adsorption of MIB and NOM onto activated carbon II . Competitive effects. Carbon N. Y. 40, 2147–2156.
Newcombe, G., Nicholson, B., 2004. Water treatment options for dissolved cyanotoxins. J. Water Supply Res. Technol. - Aqua 53, 227–239.
Newcombe, G., House, J., Ho, L., Baker, P., Burch, M., 2010. Management Strategies for Cyanobacteria (Blue-Green Algae): A Guide for Water Utilities. Research Report No 74. Adelaide, SA, Australia.
Pendleton, P., Wong, S.H., Schumann, R., Levay, G., Denoyel, R., Rouquero, J., 1997. Properties of activated carbon controlling 2-Methylisoborneol adsorption. Carbon N. Y. 35, 1141–1149. doi:10.1016/S0008-6223(97)00086-9
Pestana, C.J., Reeve, P.J., Sawade, E., Voldoire, C.F., Newton, K., Praptiwi, R., Collingnon, L., Dreyfus, J., Hobson, P., Gaget, V., Newcombe, G., 2016. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge. Sci. Total Environ. 565, 1192–1200. doi:10.1016/j.scitotenv.2016.05.173
Pietsch, J., Bornmann, K., Schmidt, W., 2002. Relevance of intra- and extracellular cyanotoxins for drinking water treatment. Acta Hydrochim. Hydrobiol. 30, 7–15. doi:10.1002/1521-401X(200207)30:1<7::AID-AHEH7>3.0.CO;2-W
Pirbazari, M., Borow, H.S., Craig, S., Ravindran, V., McGuire, M.J., 1992. Physical Chemical Characterization of Five Earthy-Musty-Smelling Compounds. Water Sci. Technol. 25, 81 LP-88.
Qi, F., Xu, B., Chen, Z., Ma, J., Sun, D., Zhang, L., 2009. Efficiency and products investigations on the ozonation of 2-methylisoborneol in drinking water. Water Environ. Res. 81, 2411–2419. doi:10.2175/106143009X425933
Qi, S., Adham, S.S., Snoeyink, V.L., Lykins, B.W., 1994. Prediction and Verification of Atrazine Adsorption by PAC. J. Environ. Eng. 120, 202–218. doi:10.1061/(ASCE)0733-9372(1994)120:1(202)
Qi, S., Schideman, L., Mariñas, B.J., Snoeyink, V.L., Campos, C., 2007. Simplification of the IAST for activated carbon adsorption of trace organic compounds from natural water. Water Res. 41, 440–448. doi:10.1016/j.watres.2006.10.018
Radke, C.J., Prausnitz, J.M., 1972. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 18, 761–768. doi:10.1002/aic.690180417
Shimabuku, K.K., Cho, H., Townsend, E.B., Rosario-Ortiz, F.L., Summers, R.S., 2014. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition. Environ. Sci. Technol. 48, 13735–13742. doi:10.1021/es503512v
Simpson, R., 1998. Practical Aspects of PAC Application For Taste and Odor Control, In AWWARF Taste and Odor Workshop, July 23-24, 1998, Chicago, I11.
Sontheimer, H., Crittenden, J., Summers, S., 1998. Activated Carbon for Water Treatment. DVGW-Forschungsstelle, Engler-Brunite-Institute, Germany
Suffet, I.H., Khiari, D., Bruchet, A., 1999. The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Sci. Technol. doi:10.1016/S0273-1223(99)00531-4
Sun, F., Pei, H.Y., Hu, W.R., Li, X.Q., Ma, C.X., Pei, R.T., 2013. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep. Purif. Technol. 115, 123–128. doi:10.1016/j.seppur.2013.05.004
Świetlik, J., Raczyk-Stanisławiak, U., Biłozor, S., Ilecki, W., Nawrocki, J., 2002. Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon. Water Res. 36, 2328–2336. doi:10.1016/S0043-1354(01)00451-1
Teixeira, M.R., Rosa, M.J., 2007. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Part II. The effect of water background organics. Sep. Purif. Technol. 53, 126–134. doi:10.1016/j.seppur.2006.07.001
Teixeira, M.R., Sousa, V., Rosa, M.J., 2010. Investigating dissolved air flotation performance with cyanobacterial cells and filaments. Water Res. 44, 3337–3344. doi:10.1016/j.watres.2010.03.012
Traegner, U.K., Suidan, M.T., 1989a. Evaluation of surface and film diffusion coefficients for carbon adsorption. Water Res. 23, 267–273. doi:10.1016/0043-1354(89)90091-2
Traegner, U.K., Suidan, M.T., 1989b. Parameter Evaluation for Carbon Adsorption. J. Environ. Eng. 115, 109–128.
Velten, S., Knappe, D.R.U., Traber, J., Kaiser, H.-P., vonGunten, U., Boller, M., Meylan, S., 2011. Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Res. 45, 3951–3959. doi:10.1016/j.watres.2011.04.047
Velzeboer, R., Drikas, M., Donati, C., Burch, M., Steffensen, D., 1995. Release of geosmin by Anabaena circinalis following treatment with aluminium sulphate. Water Sci. Technol. doi:10.1016/0273-1223(95)00475-3
Watson, S.B., Brownlee, B., Satchwill, T., Hargesheimer, E.E., 2000. QUANTITATIVE ANALYSIS OF TRACE LEVELS OF GEOSMIN AND MIB IN SOURCE AND DRINKING WATER USING HEADSPACE SPME. Water Res. 34, 2818–2828.
Watson, S.B., Ridal, J., Boyer, G.L., 2008. Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Can. J. Fish. Aquat. Sci. 65, 1779–1796. doi:10.1139/F08-084
Wigton, A., Kilduff, J.E., 2004. Modeling Trichloroethylene Adsorption by Activated Carbon Preloaded with Natural Dissolved Organic Matter Using a Modified. Environ. Sci. Technol. 5825–5833.
Yang, J.S., Yuan, D.X., Weng, T.P., 2010. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination 263, 271–278. doi:10.1016/j.desal.2010.06.069
Yu, J., Yang, F.C., Hung, W.N., Liu, C.L., Yang, M., Lin, T.F., 2016. Prediction of powdered activated carbon doses for 2-MIB removal in drinking water treatment using a simplified HSDM approach. Chemosphere 156, 374–382. doi:10.1016/j.chemosphere.2016.05.010
Yu, J., Yang, M., Lin, T.F., Guo, Z., Zhang, Y., Gu, J., Zhang, S., 2007. Effects of surface characteristics of activated carbon on the adsorption of 2-methylisobornel (MIB) and geosmin from natural water. Sep. Purif. Technol. 56, 363–370. doi:10.1016/j.seppur.2007.01.039
Zaitlin, B., Watson, S.B., 2006. Actinomycetes in relation to taste and odour in drinking water: Myths, tenets and truths. Water Res. 40, 1741–1753. doi:10.1016/j.watres.2006.02.024
Zamyadi, A., Dorner, S., Ndong, M., Ellis, D., Bolduc, A., Bastien, C., Prévost, M., 2013a. Low-risk cyanobacterial bloom sources: Cell accumulation within full-scale treatment plants. J. Am. Water Works Assoc. 105, 65–66. doi:10.5942/jawwa.2013.105.0141
Zamyadi, A., Dorner, S., Sauvé, S., Ellis, D., Bolduc, A., Bastien, C., Prévost, M., 2013b. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Water Res. 47, 2689–2700. doi:10.1016/j.watres.2013.02.040
Zamyadi, A., Henderson, R., Stuetz, R., Hofmann, R., Ho, L., Newcombe, G., 2015. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water Res. 83, 171–183. doi:10.1016/j.watres.2015.06.038
Zamyadi, A., Henderson, R.K., Stuetz, R., Newcombe, G., Newton, K., Gladman, B., 2016. Cyanobacterial management in full-scale water treatment and recycling processes: reactive dosing following intensive monitoring. Environ. Sci. Water Res. Technol. 2, 362–375. doi:10.1039/C5EW00269A
Zamyadi, A., MacLeod, S.L., Fan, Y., McQuaid, N., Dorner, S., Sauvé, S., Prévost, M., 2012. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Res. 46, 1511–1523. doi:10.1016/j.watres.2011.11.012
Zoschke, K., Engel, C., Börnick, H., Worch, E., 2011. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: Influence of NOM and process modelling. Water Res. 45, 4544–4550. doi:10.1016/j.watres.2011.06.006