| 研究生: |
黃彥霖 Huang, Yen-Lin |
|---|---|
| 論文名稱: |
台灣豬霍亂沙門氏桿菌分離株鞭毛蛋白基因選殖與其表現蛋白之免疫力分析 Cloning of the flagellin gene and immunogenicity analysis of its expressed protein of swine Salmonella enterica serovar Choleraesuis isolates in Taiwan |
| 指導教授: |
吳文鑾
Wu, Wen-Luan 謝耀清 Hsieh, Yao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 豬霍亂沙門氏桿菌 、鞭毛蛋白 、免疫力 |
| 外文關鍵詞: | Salmonella enterica serovar Choleraesuis, flagellin, antigenicity |
| 相關次數: | 點閱:116 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
豬霍亂沙門氏桿菌(Salmonella enterica serovar Choleraesuis)長期潛伏於豬場,感染豬隻,造成豬隻下痢、失重、生長率下降及全身性敗血症,嚴重者甚至會死亡,好發於保育至肥育前期(8週至14週)的豬群。近年來,由於抗生素之濫用及抗藥性菌株產生,且豬霍亂沙門氏桿菌會寄生於細胞內,不易被抗生素殺滅,造成防治上的困難。因此發展安全有效之疫苗,為防治豬霍亂沙門氏桿菌之重要課題。鞭毛蛋白是構成鞭毛的重要元素,能誘導宿主產生體液性及細胞性免疫反應。本實驗以引子對FliC-F和FliC-R增幅fliC基因,並比較標準菌株和近4年16株野外分離株的鞭毛蛋白序列,顯示菌株間之鞭毛蛋白序列無明顯改變。將標準菌株之fliC基因構築於pGEX4T-1載體,轉型至E. coli BL21大量表現鞭毛蛋白,將純化的鞭毛蛋白以不同濃度進行腹部注射免疫接種BALB/c小鼠。小鼠每週固定抽取眼窩血,以血清進行ELISA測試,二次免疫50 μg組的小鼠血清抗體力價為1:160,與陽性對照組(減毒疫苗, Suisaloral®)的抗體力價相同。另外,培養免疫接種小鼠的脾臟細胞,利用ELISA測試培養液內IL-2、IFN-γ和TNF-α三種細胞激素含量,二次免疫50 μg組的小鼠脾臟細胞分泌量分別為529 pg/ml、849 pg/ml、392 pg/ml,最接近陽性對照組。在攻毒試驗中,二次免疫50 μg組的小鼠存活率為100%且沒有臨床症狀產生,與陽性對照組的結果相同。綜合上述實驗結果,豬霍亂沙門氏桿菌的鞭毛蛋白具有引發小鼠體液性和細胞性免疫反應的能力,並能誘使小鼠體內產生保護力,顯示鞭毛蛋白可當作次單位疫苗或免疫佐劑的選擇,進而應用於防治豬霍亂沙門氏桿菌。
Salmonella enterica serovar Choleraesuis is one of the predominant pathogens in Taiwanese piggeries. Typical clinical manifestations are septicemia, diarrhea, weight loss, growth rate decreasing, and even death. It causes disease in weaning pigs and in the early stage of finishing pigs (during 8 weeks to 14 weeks). Salmonella enterica serovar Choleraesuis belongs to Enterobacteriaceae. In recent years, due to abusing antibiotics in the field, antibiotic resistence has been a serious problem. Moreover, Salmonella enterica serovar Choleraesuis, which is an intracellular pathogen, is resistant to antibiotic treatment. It is important to develop a safe and more effective vaccine. Flagellum is composed with flagellin, which can induce humoral and cellular immune resposes. In this study, FliC-F and FliC-R were used as primers to amplify fliC gene. We align the flagellin sequences of the standard strain and 16 recently isolated strains. It is shown that the fligellin sequences were similar in these strains. The gene was constructed into pGEX4T-1 and transformed to E. coli BL21 to express the flagellin. The recombinant flagellin was immunized to the BALB/c with three different doses of flagellin via intraperitoneal route. Blood samples were weekly collected by orbital bleeding, and antibody titers were determined by ELISA. The group of 50 μg immunized twice has the same results of antibody titer (1:160) as the group of attenuated vaccine. Spleen cells of immunized mice were cultured and amount of cytokines (IL-2、IFN-γ and TNF-α) in medium were determined by ELISA. The cytokine secretion were 529 pg/ml、849 pg/ml、392 pg/ml in group of 50 μg immunized twice. It is similar with the result of the group of attenuated vaccine. Immunized mice were challenged by Salmonella enterica serovar Choleraesuis to observe the efficacy of flagellin. The group of 50 μg immunized twice has the same survival rate (100%) as the group of attenuated vaccine. The results suggested that the flagellin could provide the protection against Salmonella enterica serovar Choleraesuis and had implications for development of a subunit vaccine for Salmonella enterica serovar Choleraesuis.
朱光寧、謝文逸、廖朝政、沈詠梅。1993。豬隻敗血症病因及流行病學之研究。台糖畜研所81/82 年期研究試驗報告141-148.
洪健哲。2002。猪周邊血液吞噬細胞與沙門氏桿菌致病性之探討。國立中興大學獸醫病理學研究所碩士論文。
張靖男、朱光寧、沈詠梅、謝文逸。1993。豬沙氏桿菌性多發性漿膜炎之防治。台糖畜研所81/82 年期研究試驗報告131-140.
魯懿萍,潘銘正,鄭純彬。1996。猪沙門氏桿菌症分離株血清型,生化型及基因型別之研究。台灣畜牧獸醫會報66 ( Sup 1 ): 12
Agrawal, S., Agrawal, A., Doughty, B., Gerwitz, A., Blenis, J., Van Dyke, T. and Pulendran, B. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 171(10): 4984-4989, 2003.
Akira, S., Yamamoto, M. and Takeda, K. Role of adapters in Toll-like receptor signalling. Biochem Soc Trans 31(3): 637-642, 2003.
Amieva, M. R., Salama, N. R., Tompkins, L. S. and Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4(10): 677-690, 2002.
Baker, T. A., Grossman, A. D. and Gross, C. A. A gene regulating the heat shock response in Escherichia coli also affects proteolysis. Proc Natl Acad Sci U S A 81(21): 6779-6783, 1984.
Barton, G. M. and Medzhitov, R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14(3): 380-383, 2002.
Beg, A. A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23(11): 509-512, 2002.
Cario, E. and Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68(12): 7010-7017, 2000.
Chatfield, S. N., Strahan, K., Pickard, D., Charles, I. G., Hormaeche, C. E. and Dougan, G. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog 12(2): 145-151, 1992.
Chaubal, L. H. and Holt, P. S. Characterization of swimming motility and identification of flagellar proteins in Salmonella pullorum isolates. Am J Vet Res 60(10): 1322-1327, 1999.
Chiu, C. H., Su, L. H. and Chu, C. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev 17(2): 311-322, 2004.
Chu, C. Y., Wang, S. Y., Chen, Z. W., Chien, M. S., Huang, J. P., Chen, J. J., Hong, L. S., Shiau, A. L., Tsai, J. L. and Wu, C. L. Heterologous protection in pigs induced by a plasmid-cured and crp gene-deleted Salmonella choleraesuis live vaccine. Vaccine 25(41): 7031-7040, 2007.
Chuang, T. and Ulevitch, R. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. BBA-Gene Structure and Expression 1518(1-2): 157-161, 2001.
Clark, R. C., Thoen, C. O. and Gyles, C. L. Salmonellosis. Pathogenesis of bacterial infections in animals.: 133-153, 1993.
Clarke, R. C. and Gyles, C. L. Vaccination of calves with a diaminopimelic acid mutant of Salmonella typhimurium. Can J Vet Res 51(1): 32-38, 1987.
Cookson, B. T. and Bevan, M. J. Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J Immunol 158(9): 4310-4319, 1997.
Curtiss, R., 3rd, Kelly, S. M. and Hassan, J. O. Live oral avirulent Salmonella vaccines. Vet Microbiol 37(3-4): 397-405, 1993.
Davies, R. H. and Wray, C. Persistence of Salmonella enteritidis in poultry units and poultry food. Br Poult Sci 37(3): 589-596, 1996.
Didierlaurent, A., Ferrero, I., Otten, L. A., Dubois, B., Reinhardt, M., Carlsen, H., Blomhoff, R., Akira, S., Kraehenbuhl, J. P. and Sirard, J. C. Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172(11): 6922-6930, 2004.
Dominguez-Bernal, G., Tierrez, A., Bartolome, A., Martinez-Pulgarin, S., Salguero, F. J., Antonio Orden, J. and de la Fuente, R. Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively. Vet Microbiol 130(3-4): 298-311, 2008.
Doran, J. L., Collinson, S. K., Burian, J., Sarlos, G., Todd, E. C., Munro, C. K., Kay, C. M., Banser, P. A., Peterkin, P. I. and Kay, W. W. DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J Clin Microbiol 31(9): 2263-2273, 1993.
Du, X., Poltorak, A., Wei, Y. and Beutler, B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11(3): 362-371, 2000.
Eaves-Pyles, T. D., Wong, H. R., Odoms, K. and Pyles, R. B. Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol 167(12): 7009-7016, 2001.
Feldman, M., Bryan, R., Rajan, S., Scheffler, L., Brunnert, S., Tang, H. and Prince, A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66(1): 43-51, 1998.
Fikrig, E., Barthold, S. W., Kantor, F. S. and Flavell, R. A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 250(4980): 553-556, 1990.
Galan, J. E., Nakayama, K. and Curtiss, R., 3rd. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94(1): 29-35, 1990.
Germanier, R. and Furer, E. Immunity in experimental salmonellosis. II. Basis for the avirulence and protective capacity of gal E mutants of Salmonella typhimurium. Infect Immun 4(6): 663-673, 1971.
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167(4): 1882-1885, 2001.
Gray, J. T. and Fedorka-Cray, P. J. Long-term survival and infectivity of Salmonella choleraesuis. Berl Munch Tierarztl Wochenschr 114(9-10): 370-374, 2001.
Grodberg, J. and Dunn, J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170(3): 1245-1253, 1988.
Hanson, E. P., Monaco-Shawver, L., Solt, L. A., Madge, L. A., Banerjee, P. P., May, M. J. and Orange, J. S. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 122(6): 1169-1177 e1116, 2008.
Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M. and Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832): 1099-1103, 2001.
Hemmi, H. and Akira, S. A Novel Toll-Like Receptor that Recognizes Bacterial DNA. Microbial DNA and Host Immunity, 2002.
Hess, J., Ladel, C., Miko, D. and Kaufmann, S. H. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156(9): 3321-3326, 1996.
Hoiseth, S. K. and Stocker, B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291(5812): 238-239, 1981.
Hone, D., Morona, R., Attridge, S. and Hackett, J. Construction of defined galE mutants of Salmonella for use as vaccines. J Infect Dis 156(1): 167-174, 1987.
Hoorfar, J., Baggesen, D. L. and Porting, P. H. A PCR-based strategy for simple and rapid identification of rough presumptive Salmonella isolates. J Microbiol Methods 35(1): 77-84, 1999.
Hsu, F. S., Chuech, L. L. and Shen, Y. M. Isolation, serotyping and drug resistance of salmonellae in scouring pigs in Taiwan. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 16(4): 283-290, 1983.
Janeway, C. A., Jr. and Medzhitov, R. Innate immune recognition. Annu Rev Immunol 20: 197-216, 2002.
Johnson, K. S., Harrison, G. B., Lightowlers, M. W., O'Hoy, K. L., Cougle, W. G., Dempster, R. P., Lawrence, S. B., Vinton, J. G., Heath, D. D. and Rickard, M. D. Vaccination against ovine cysticercosis using a defined recombinant antigen. Nature 338(6216): 585-587, 1989.
Joys, T. M. The covalent structure of the phase-1 flagellar filament protein of Salmonella typhimurium and its comparison with other flagellins. J Biol Chem 260(29): 15758-15761, 1985.
Kaelin, W. G., Jr., Pallas, D. C., DeCaprio, J. A., Kaye, F. J. and Livingston, D. M. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64(3): 521-532, 1991.
Kajikawa, A., Satoh, E., Leer, R. J., Yamamoto, S. and Igimi, S. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine 25(18): 3599-3605, 2007.
Kennedy, M. J., Yancey, R. J., Jr., Sanchez, M. S., Rzepkowski, R. A., Kelly, S. M. and Curtiss, R., 3rd. Attenuation and immunogenicity of Deltacya Deltacrp derivatives of Salmonella choleraesuis in pigs. Infect Immun 67(9): 4628-4636, 1999.
Kramer, T. T., Roof, M. B. and Matheson, R. R. Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. Am J Vet Res 53(4): 444-448, 1992.
Ku, Y. W., McDonough, S. P., Palaniappan, R. U., Chang, C. F. and Chang, Y. F. Novel attenuated Salmonella enterica serovar Choleraesuis strains as live vaccine candidates generated by signature-tagged mutagenesis. Infect Immun 73(12): 8194-8203, 2005.
Le Minor, L. Typing of Salmonella species. Eur. J. Clin. Microbiol. Infect. Dis. 7(2): 214-218, 1988.
Lee, J. H., Rho, J. B., Park, K. J., Kim, C. B., Han, Y. S., Choi, S. H., Lee, K. H. and Park, S. J. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72(8): 4905-4910, 2004.
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6): 973-983, 1996.
Liu, R. and Ochman, H. Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci U S A 104(17): 7116-7121, 2007.
Macnab, R. How bacteria assemble flagella. Annual review of microbiology 57: 77-100, 2003.
Macnab, R. M. Bacterial flagella rotating in bundles: a study in helical geometry. Proc Natl Acad Sci U S A 74(1): 221-225, 1977.
Macnab, R. M. Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26: 131-158, 1992.
Marchetti, M., Sirard, J. C., Sansonetti, P., Pringault, E. and Kerneis, S. Interaction of pathogenic bacteria with rabbit appendix M cells: bacterial motility is a key feature in vivo. Microbes Infect 6(6): 521-528, 2004.
McSorley, S. J., Cookson, B. T. and Jenkins, M. K. Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol 164(2): 986-993, 2000.
McSorley, S. J., Ehst, B. D., Yu, Y. and Gewirtz, A. T. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169(7): 3914-3919, 2002.
Means, T. K., Hayashi, F., Smith, K. D., Aderem, A. and Luster, A. D. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170(10): 5165-5175, 2003.
Merrell, D. S. and Falkow, S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 430(6996): 250-256, 2004.
Meyer, V. H., Beer, K., Fischer, L., Gareiss, G., Grob, W., Koerber, R., Loertzing, B., Ludwig, H. J. and Luecke, O. Prevention and control of Salmonella infections among farm animals in GDR. Monatsch. Veterinaermed. 45(12): 403-406, 1990.
Mimori-Kiyosue, Y., Vonderviszt, F. and Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J Mol Biol 270(2): 222-237, 1997.
Mims, C., Playfair, J., Roitt, I., Wakelin, D. and Williams, R. Medical microbiology. Clin Chem Lab Med 36(11): 895, 1998.
Mittrucker, H. W. and Kaufmann, S. H. Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol 67(4): 457-463, 2000.
Mobley, H. L., Belas, R., Lockatell, V., Chippendale, G., Trifillis, A. L., Johnson, D. E. and Warren, J. W. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64(12): 5332-5340, 1996.
Muzio, M., Bosisio, D., Polentarutti, N., D'Amico, G., Stoppacciaro, A., Mancinelli, R., van't Veer, C., Penton-Rol, G., Ruco, L. P., Allavena, P. and Mantovani, A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164(11): 5998-6004, 2000.
O'Callaghan, D., Maskell, D., Liew, F. Y., Easmon, C. S. and Dougan, G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun 56(2): 419-423, 1988.
O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8(3): 275-283, 1998.
O'Toole, P. W., Lane, M. C. and Porwollik, S. Helicobacter pylori motility. Microbes Infect 2(10): 1207-1214, 2000.
Ohta-Tada, U., Takagi, A., Koga, Y., Kamiya, S. and Miwa, T. Flagellin gene diversity among Helicobacter pylori strains and IL-8 secretion from gastric epithelial cells. Scand J Gastroenterol 32(5): 455-459, 1997.
Pallen, M. J., Penn, C. W. and Chaudhuri, R. R. Bacterial flagellar diversity in the post-genomic era. Trends Microbiol 13(4): 143-149, 2005.
Parish, C. R., Lang, P. G. and Ada, G. L. Tolerance in adult rats to a purified protein, flagellin, from Salmonella adelaide. Nature 215(5106): 1202-1203, 1967.
Parish, C. R. and Liew, F. Y. Immune response to chemically modified flagellin. 3. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J Exp Med 135(2): 298-311, 1972.
Peacock, J. S. and Barisas, B. G. Photobleaching recovery studies of antigen-specific mouse lymphocyte stimulation by DNP-conjugated polymerized flagellin. J Immunol 127(3): 900-906, 1981.
Plano, G. V., Day, J. B. and Ferracci, F. Type III export: new uses for an old pathway. Mol Microbiol 40(2): 284-293, 2001.
Popoff, M. Y., Bockemuhl, J. and Gheesling, L. L. Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol 155(7): 568-570, 2004.
Richardson, K. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect Immun 59(8): 2727-2736, 1991.
Roof, M. B. and Doitchinoff, D. D. Safety, efficacy, and duration of immunity induced in swine by use of an avirulent live Salmonella choleraesuis-containing vaccine. Am J Vet Res 56(1): 39-44, 1995.
Rubin, R. and Weinstein, L. Salmonellosis: Microbiologic, Pathologic, and Clinical Features, Stratton Intercontinental Medical Book Corp. New York, 1977.
Salazar-Gonzalez, R. M., Srinivasan, A., Griffin, A., Muralimohan, G., Ertelt, J. M., Ravindran, R., Vella, A. T. and McSorley, S. J. Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. J Immunol 179(9): 6169-6175, 2007.
Salmon, D. E. and Smith, T. The bacterium of swine plague. Am Month Microscop: 204-205, 1886.
Samatey, F. A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M. and Namba, K. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410(6826): 331-337, 2001.
Santos, R. L., Zhang, S., Tsolis, R. M., Kingsley, R. A., Adams, L. G. and Baumler, A. J. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3(14-15): 1335-1344, 2001.
Sbrogio-Almeida, M. E., Mosca, T., Massis, L. M., Abrahamsohn, I. A. and Ferreira, L. C. Host and bacterial factors affecting induction of immune responses to flagellin expressed by attenuated Salmonella vaccine strains. Infect Immun 72(5): 2546-2555, 2004.
Scholl, W. and Grunert, G. Suisaloral "Dessau"--a Salmonella cholerae suis live vaccine for oral, parenteral and combined applications. Arch Exp Veterinarmed 34(1): 91-97, 1980.
Schwartz, K. Diagnosing and controlling Salmonella choleraesuis in swine. Veterinary medicine 86(10): 1041-1048, 1991.
Schwartz, K. Salmonellosis. Diseases of Swine, Iowa State University Ames Iowa U. S. A. 535-551, 1999.
Sims, L. and Glastonbury, J. The pathology of the pig : a diagnostic guide. The Pig Research and Development Corporation and Agriculture Victoria, Barton, Australia 109-125, 1996.
Srinivasan, A., Foley, J. and McSorley, S. J. Massive number of antigen-specific CD4 T cells during vaccination with live attenuated Salmonella causes interclonal competition. J Immunol 172(11): 6884-6893, 2004.
Stocker, B. A. and Newton, S. M. Immune responses to epitopes inserted in Salmonella flagellin. Int Rev Immunol 11(2): 167-178, 1994.
Strindelius, L., Filler, M. and Sjoholm, I. Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 22(27-28): 3797-3808, 2004.
Sztein, M. B., Wasserman, S. S., Tacket, C. O., Edelman, R., Hone, D., Lindberg, A. A. and Levine, M. M. Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis 170(6): 1508-1517, 1994.
Takata, T., Shirakawa, T., Kawasaki, Y., Kinoshita, S., Gotoh, A., Kano, Y. and Kawabata, M. Genetically engineered Bifidobacterium animalis expressing the Salmonella flagellin gene for the mucosal immunization in a mouse model. J Gene Med 8(11): 1341-1346, 2006.
Takeuchi, O., Kawai, T., Sanjo, H., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Takeda, K. and Akira, S. TLR6: A novel member of an expanding toll-like receptor family. Gene 231(1-2): 59-65, 1999.
Toye, B., Zhong, G. M., Peeling, R. and Brunham, R. C. Immunologic characterization of a cloned fragment containing the species-specific epitope from the major outer membrane protein of Chlamydia trachomatis. Infect Immun 58(12): 3909-3913, 1990.
van Rijn, P. A., Bossers, A., Wensvoort, G. and Moormann, R. J. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 77 (11): 2737-2745, 1996.
Weide-Botjes, M., Liebisch, B., Schwarz, S. and Watts, J. L. Molecular characterization of Salmonella enterica subsp. enterica serovar choleraesuis field isolates and differentiation from homologous live vaccine strains suisaloral and SC-54. J Clin Microbiol 34(10): 2460-2463, 1996.
Wyant, T. L., Tanner, M. K. and Sztein, M. B. Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect Immun 67(7): 3619-3624, 1999.
Yonekura, K., Maki-Yonekura, S. and Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424(6949): 643-650, 2003.