| 研究生: |
吳秉衡 Wu, Ping-heng |
|---|---|
| 論文名稱: |
混沌需求型態下供應鏈長鞭效應之研究 Bullwhip effect in supply chain based on chaotic demand |
| 指導教授: |
王泰裕
Wang, Tai-yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 長鞭效應 、混沌時間序列 、Mackey-Glass方程式 、供應鏈管理 |
| 外文關鍵詞: | supply chain management, bullwhip effect, chaotic time series, Mackey-Glass equation |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球化貿易日益頻繁,企業面對的是全球的競爭對手,因此供應鏈管理也就越來越重要。有效的供應鏈管理可以幫助供應鏈上各成員將正確數目與品質的產品在正確的時間及地點送達正確的顧客手中。「長鞭效應」是供應鏈中常見的現象,所謂的長鞭效應就是供應鏈下游需求有些微的改變,會造成供應鏈上游訂購量及存貨量較大的波動,且是越往上游波動起伏越大。混沌需求型態下的長鞭效應並未被深入研究及探討,因此本篇論文主要針對混沌需求型態的供應鏈探討其長鞭效應的成因。事實上並非一定要非常特殊的商品才具有混沌需求的特性,舉凡像是冷氣機和電源供應器相關裝置等等,都已經有學者證實其需求為混沌系統。因混沌型態的需求特性,導致需求更不容易預測,因而增加供應商的存貨或零售商的訂貨量,使得長鞭效應的情形更為嚴重,因此混沌系統的需求不穩定的特性對於長鞭效應的影響也是本篇論文所要探討的重點。
本研究利用Gupta改良之Mackey-Glass方程式進行需求端數學模式的建立,在供應端則定義最佳訂貨量為使預期存貨達到管理人員訂定之目標存貨量,最後根據這兩個數學模型推導出能夠衡量需求端和供應端長鞭效應的兩個衡量指標值,藉此找出影響混沌需求型態下長鞭效應的主要成因,並探討兩指標值背後的管理意義。
經由模式推導及實證結果分析,影響混沌需求型態下長鞭效應的主要因素為前置時間,且前置時間的長短和兩衡量指標值有顯著的正相關。也就是說前置時間越長則會使得需求和供應兩端長鞭效應的情形越顯著。最後經由敏感度分析可以找出管理人員須盡力將前置時間控制在變動幅度較小的可接受範圍內,並且讓管理者了解模式建立時各參數值設定的合理數值。
Supply chain management is getting more important to an enterprise because of the blooming international business and the intensive competition. The efficient SCM can create common benefit among suppliers, distributors, retailers, and other firms within the supply chain. Bullwhip effect is a well known phenomenon in the supply chain and it makes the order costs or the holding costs of the members in the supply chain increasing. Previous researches haven't profoundly studied the bullwhip effect based on chaotic demand. Thus, this research will study the bullwhip effect based on chaotic demand in a supply chain.
In this study, we use the adjusted Mackey-Glass equation as the demand model, and the best order quantity that makes the expected inventory up to the target inventory is obtained. Finally, the main cause of the bullwhip effect based on chaotic demand is found by using the demand model and the supply model.
Through empirical analysis, it is found that the major factor of the bullwhip effect with chaotic demand is lead time. The longer the length of lead time is, the more distinct the bullwhip effect is. Finally, the acceptable scope of lead time and the parameters of the model by using sensitive analysis are obtained.
Aviv, Y., “The effect of collaborative forecasting on supply chain performance,” Management Science, 47 (10), pp.1326-1343, 2001.
Bacsi, Z., and Vizvári, B., “Modelling chaotic behaviour in agricultural prices using a discrete deterministic nonlinear price model,” Annals of Operation Research, 89, pp.125-148, 1999.
Baker, G.L., and Gollub, J. P., Chaotic dynamics : an introduction, Cambridge University Press, 1996.
Beamon, B.M., “Supply Chain Design and Analysis: Models and Methods,” International Journal Production Economics, Vol. 55, pp.281-294, 1998.
Chen, F., Drezner, Z., Ryan, J., and Simichi-Levi, D., “Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information,” Management Science, 26 (3), pp.436-1143, 2000.
Christopher, M., Losistics and Supply Chain Management, Pitman Publishing, 1992.
Croom, S., Romano P., and Giannakis M., “Supply chain management: an analytical framework for critical literature review,” European Journal of Purchasing & Supply Management, 6, pp.67-83, 2000.
Disbro, J.E., and Frame, M., “Traffic Flow Theory and Chaotic Behavior,” Transportation Research Record, 1225, pp. 109-115, 1989.
Gilbert, k., “An ARIMA supply chain model,” Management Science, 51(2), pp.305-310, 2005.
Guégan, D., and Mercier, L., “Prediction in chaotic time series: Methods and comparisons with an application to Financial intra-day data,” The Europen Journal of Finance, 11(2), pp.137-150, 2005.
Gupta, J. N. D., and Sexton, R. S., “Comparing backpropagation with a genetic algorithm for neural network training,” The International Journal of Management Science, 27, pp.679–684, 1999.
Lee, H.L., So, K.C., and Tang, C.S., “The value of information sharing in a two-level supply chain,” Management Science, 46 (5), pp.626-643, 2000.
Lee, H. L., Padmanabhan, V. and Whang, S., “The bullwhip effect in supply chain,” Sloan Management Review, 38(3), pp.93-102,1997a.
Lee, H.L., Padmanabhan, V., and Whang, S., “Information Distortion in a Supply Chain:The Bullwhip Effect,” Management Science, 43(4), pp.546-558, 1997b.
Iokibe, T., Koyama, M., and Taniguchi, M., “Industrial Applications of Short-term Prediction on Chaotic Time Series by Local Fuzzy Reconstruction Method,” Proceedings of the First International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, Australia, 1, pp. 126-130, 1997.
Iokibe, T., Murata, S., and Koyama, M., “Prediction of Foreign Exchange Rate by Local Fuzzy Reconstruction Method,” IEEE International Conference on Intelligent Systems for the 21st Century, 5, pp.4051-4054, 1995.
Kiel, L. D., and E. Elliott, Chaos Theory in the Social Sciences:Foundations and Applications, University of Michigan Press, 1996.
Mackey, M. C., and Glass, L., “Oscillation and Chaos in Physiological Control Systems,” Science, New Series, 197(4300), pp.287-289, 1977.
Metters, R.,”Quantifying the bullwhip effect in supply chains,” Journal of Operation Management, 15, pp.89-100, 1997.
Miragliotta, G., “Layers and mechanisms: A new taxonomy for the Bullwhip Effect,” International Journal of Production Economics, 104, pp.365-381, 2006.
O’Donnell, T., Maguire, L., McIvor, R., and Humphreys, P., “Minimizing the bullwhip effect in a supply chain using genetic algorithms,” International Journal of Production Research, 44(8), pp.1523-1543, 2006.
Sterman, J.D., Introduction for running the Beer Distribution Game, Sloan School of Management, Boston, 1984.
Tan, K.C., Kannan, V. R., and Handfield, R. B., “Supply chain management: Supplier performance and firm performance,” International Journal of Purchasing and Material Management 34(3), pp.2-9, 1998.
Wang, T.Y., and Huang, C.Y., “Applying optimized BPN to a chaotic time series problem,” Expert Systems with Applications 32(1), pp.193-200, 2007
Wang, K.J., Wee, H.M., Gao, S.F., and Chung, S.L., “Production and inventory control with chaotic demands,” The International Journal of Management Science, 33, pp.97-106, 2005.