簡易檢索 / 詳目顯示

研究生: 黃仰駿
Huang, Yang-Chun
論文名稱: 台南鹽水溪表面水與底泥中塑膠微粒之汙染分布
Microplastic distribution in surface water and sediment of Yanshui River in Tainan, Taiwan
指導教授: 陳?如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 62
中文關鍵詞: 塑膠微粒尼羅紅鹽水溪表面水底泥
外文關鍵詞: Microplastics, Nile red (NR), Yanshui (YS) river, surface water, sediment
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,塑膠大量使用與衍生的塑膠汙染相關議題越來越受到重視,塑膠微粒(Microplastics, MPs)於環境中廣泛存在和其持久性可能對生態系統造成潛在風險,因此了解環境中MPs汙染至關重要。然而,現有MPs定量方法多費時或需使用昂貴儀器(如:FTIR、拉曼光譜儀和熱裂解GC/MS等),相對便宜省時之顯微鏡搭配螢光染劑-尼羅紅(Nile red, NR)則易受環境有機質干擾,而高估其含量。本研究選擇以螢光染劑-尼羅紅方法搭配螢光顯微鏡進行MPs分析,旨在建立樣品前處理程序(包括乾燥、前氧化、浮選分離和後氧化),再進行染色測定以減少有機物干擾,並於2021年7、8以及9月(濕季)及2021年4、12月以及2022年2月(乾季)採集六次台灣台南鹽水溪上游至下游表面水(n=27)及底泥樣品(n=33),檢測其汙染豐富度、大小及外型分佈。
    測試塑膠顆粒對於氧化的穩定性、密度分離回收率及尼羅紅染色的分析,從日常生活中獲得5種聚合物類型的塑膠,建立樣品前處理流程。以結果顯示使用30%H2O2將會使塑膠微粒尺寸縮小20%的現象發生,然而15%H2O2並不會有此現象發生。DI水(1 g/cm3)及氯化鈉溶液(1.2 g/cm3)無法有效分離比重較大的塑膠微粒,密度較大之氯化鋅溶液(1.5 g/cm3)能分離5種聚合物類型塑膠。NR染劑均可染色MPs,且聚合物類型並不影響螢光強度。
    結果顯示針對底泥樣品經由15% H2O2、5 M ZnCl2及1.2% H2O2分別進行前氧化、浮選分離及後氧化程序,能將底泥中有機物含量從0.47%減少至0.19%,去除率為59.0%,每20 g乾重底泥樣品螢光訊號由14,359.7 item減少至86.3 item,減少率為99.4%,本研究確認使用此程序可有效減少有機物的干擾。利用此建立之流程應用於環境樣品中,結果顯示表面水之MPs豐富度為9-27 item/L,底泥之MPs豐富度為18-134.5 item/20g sediment dw。表面水及底泥中主要尺寸以小粒徑(10–100 μm) (表面水:80.6%、底泥:61.0%)、外型以纖維(表面水:44.77%、底泥:51.0%)及碎片(表面水:35.1%、底泥:32.7%)為主。在鹽水溪之空間分布顯示不論在表面水或是底泥樣品下游地區(表面水:21.6±5.5 item/L;底泥:79.2±28.4 items/20 g dw)豐富度大於上游(表面水:13.4±3.4item/L;底泥:26.7±9.1 items/20 g dw)。在鹽水溪之季節變化顯示在表面水或是底泥樣品濕季(表面水:18.1±6.7 item/L;底泥:56.3±26.6 items/20 g dw)豐富度皆大於乾季(表面水:12.8±4.5 item/L;底泥:54.6±24.2 items/20 g dw)。

    In recent years, the issue of plastic pollution arising from the massive use of plastics has received increasing attention. The prevalence and persistence of microplastics (MPs) in the environment may pose potential risks to ecosystems, and therefore it is important to understand MPs concentration in the environment. However, the existing methods for quantification of MPs are time-consuming or require expensive instruments (e.g., FTIR, Raman spectroscopy, pyrolysis GC/MS, etc.), and the relatively inexpensive and time-saving microscope with the fluorescent dye stain (Nile red, NR), is easily interfered by natural organic matter and overestimates its contents. In this study, MPs were stained by NR dye and analyzed by fluorescence microscopy. A pretreatment procedure (including drying, pre-oxidation, flotation separation, and post-oxidation) was established for environmental sediment samples. During July, August, and September 2021 (wet season), April and December 2020, and February 2022 (dry season) surface water samples (n=27) and sediment samples (n=33) were collected from the upstream to downstream of the Yanshui (YS) river in Tainan, Taiwan investigated the abundance, size and shape distribution of MPs.
    The oxidation stability, density separation recovery, and Nile red staining tested MPs five polymer types of plastics. The results showed that the use of 30% H2O2 in the MPs was 20% smaller than its original size, but 15% H2O2 hadn't this phenomenon. DI water (1 g/cm3) and sodium chloride solution (1.2 g/cm3) cannot effectively separate the MPs with larger specific gravity. In comparison, the denser zinc chloride solution (1.5 g/cm3) can separate five polymer types of plastic. NR dyes can stain MPs, and the type of polymer did not affect the fluorescence intensity.
    The results showed that the organic matter content was reduced from 0.47% to 0.19% with a removal rate of 59.0%; The fluorescence signal per 20 g sediment sample was reduced from 14,359.7 items to 86.3 items with a reduced rate of 99.4% by the pre-oxidation, flotation separation, and post-oxidation processes with 15% H2O2, 5 M ZnCl2, and 1.2% H2O2, respectively. This procedure is effective in removing the interference of organic matter. The results showed that the MPs abundance was 9-27 items/L and 18-134.5 items/20g sediment in surface water and sediment, respectively. The size of MPs in surface water and sediment were dominated by small particles (10-100 μm) (surface water: 80.6%, sediment: 61.0%), the shape is mainly fiber (surface water: 44.77%, sediment: 51.0%) and debris (surface water: 35.1%, sediment: 32.7%). The spatial distribution showed that the abundance was greater in the downstream area (surface water: 21.6±5.5 item/L; sediment: 79.2±28.4 items/20g) than in the upstream area (surface water: 13.4±3.4 item/L; sediment: 26.7±9.1 items/20g) for both surface water and sediment samples in the YS river. The seasonal variation showed that the abundance of surface water and sediment samples in the wet season (surface water: 18.1±6.7 items/L; sediment: 56.3±26.6 items/20g) was higher than that in the dry season (surface water: 12.8±4.5 items/L; sediment: 54.6±24.2 items/20g) in YS river.

    摘要 I Abstract III 致謝 V CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XI Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Plastic 3 2.1.1 Plastic pollution 3 2.1.2 Common plastics type 6 2.2 Microplastics (MPs) 8 2.2.1 The definition and source of MPs 8 2.2.2 The exposure of MPs on the ecosystem and public health 10 2.3 Identification and Quantification methods of MPs 12 2.4 Nile Red stain identifying and quantifying microplastic in an environmental sample 15 2.5 The effect of separation efficiency on the quantification of microplastics 16 2.6 The effect of natural organic matter on the identification and quantification of microplastics 17 Chapter 3 Materials and Methods 19 3.1 Chemicals 19 3.2 Study area and sampling 20 3.3 Sample pretreatment 23 3.3.1 Liquid sample 23 3.3.2 Solid sample 23 3.3.3 NR staining 25 3.4 Analysis and instruments 25 3.4.1 Organic matter measurement 25 3.5 Data analysis 25 3.5.1 Microplastic particle counting and identification 25 3.5.2 Size scale 26 3.5.3 Shape 27 3.6 Quality assurance and Quality control 27 Chapter 4 Result and Discussion 28 4.1 The optimized method development 28 4.1.1 Effect of oxidation procedures on physical characterization of MPs 28 4.1.2 Influence of floatation solution 29 4.1.3 NR staining of different polymer types 31 4.1.4 Effects of pre-oxidation and post-oxidation 34 4.2 The abundance of MPs in YS river surface water and sediment 37 4.3 The sizes of MPs in YS surface water and sediment 43 4.4 The shapes of MPs in YS surface water and sediment 46 Chapter 5 Conclusion and Suggestions 49 5.1 Conclusion 49 5.2 Suggestion 50 Reference 51 Appendix 57 Appendix A Data of solid organic matter (%) in YS river sediment 57 Appendix B Data of basic water quality parameters in YS river 58

    Reference
    Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A., & Hassanaghaei, M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere, 205, 80-87. (2018)

    Abbasi, S., & Turner, A. Human exposure to microplastics: a study in Iran. Journal of Hazardous Materials, 403, 123799. (2021)

    Alomar, C., Estarellas, F., & Deudero, S. Microplastics in the Mediterranean Sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Marine environmental research, 115, 1-10. (2016)

    Andrady, A. L. Microplastics in the marine environment. Mar Pollut Bull, 62(8), 1596-1605. (2011)

    Arthur, C., Baker, J., & Bamford, H. (2008). International research workshop on the occurrence, effects, and fate of microplastic marine debris. Conference Proceedings. Sept,

    Blumenröder, J., Sechet, P., Kakkonen, J. E., & Hartl, M. G. Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: a first assessment. Marine Pollution Bulletin, 124(1), 112-120. (2017)

    Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189-195. (2016)

    Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol, 45(21), 9175-9179. (2011)

    Castro, R. O., Silva, M. L. d., Marques, M. R. C., & Araújo, F. V. d. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Marine Pollution Bulletin, 160, 111537. (2020)

    Chen, C.-F., Ju, Y.-R., Lim, Y. C., Hsu, N.-H., Lu, K.-T., Hsieh, S.-L., Dong, C.-D., & Chen, C.-W. Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan. Chemosphere, 254, 126818. (2020)

    Claessens, M., Meester, S. D., Landuyt, L. V., Clerck, K. D., & Janssen, C. R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62(10), 2199-2204. (2011)

    Collard, F., Gilbert, B., Compère, P., Eppe, G., Das, K., Jauniaux, T., & Parmentier, E. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environmental Pollution, 229, 1000-1005. (2017)

    Constant, M., Billon, G., Breton, N., & Alary, C. Extraction of microplastics from sediment matrices: Experimental comparative analysis. Journal of Hazardous Materials, 420, 126571. (2021)

    Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., & Laforsch, C. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environmental chemistry, 12(5), 539-550. (2015)

    Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res, 75, 63-82. (2015)

    Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 mum) in Environmental Samples. Environ Sci Technol, 51(23), 13641-13648. (2017)

    Gerolin, C. R., Pupim, F. N., Sawakuchi, A. O., Grohmann, C. H., Labuto, G., & Semensatto, D. Microplastics in sediments from Amazon rivers, Brazil. Sci Total Environ, 749, 141604. (2020)

    Gewert, B., Plassmann, M. M., & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts, 17(9), 1513-1521. (2015)

    Geyer, R., Jambeck, J. R., & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. (2017)

    Grigorakis, S., Mason, S. A., & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere, 169, 233-238. (2017)

    Hüffer, T., & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214, 194-201. (2016)

    Han, X., Lu, X., & Vogt, R. D. An optimized density-based approach for extracting microplastics from soil and sediment samples. Environ Pollut, 254(Pt A), 113009. (2019)

    He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. (2018)

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. (2012)

    Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. (2018)

    Hurley, R. R., & Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6-11. (2018)

    Ilium, L., Davis, S., Wilson, C., Thomas, N., Frier, M., & Hardy, J. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. International journal of pharmaceutics, 12(2-3), 135-146. (1982)

    Issac, M. N., & Kandasubramanian, B. Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res Int, 28(16), 19544-19562. (2021)

    Kirstein, I. V., Hensel, F., Gomiero, A., Iordachescu, L., Vianello, A., Wittgren, H. B., & Vollertsen, J. Drinking plastics? - Quantification and qualification of microplastics in drinking water distribution systems by microFTIR and Py-GCMS. Water Res, 188, 116519. (2020)

    Klein, M., & Fischer, E. K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Science of the Total Environment, 685, 96-103. (2019)

    Koelmans, A. A., Kooi, M., Law, K. L., & van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environmental Research Letters, 12(11), 114028. (2017)

    Kukkola, A. T., Senior, G., Maes, T., Silburn, B., Bakir, A., Kroger, S., & Mayes, A. G. A large-scale study of microplastic abundance in sediment cores from the UK continental shelf and slope. Mar Pollut Bull, 178, 113554. (2022)

    Löhr, A., Savelli, H., Beunen, R., Kalz, M., Ragas, A., & Van Belleghem, F. Solutions for global marine litter pollution. Current Opinion in Environmental Sustainability, 28, 90-99. (2017)

    Lebreton, L., Van Der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., & Reisser, J. River plastic emissions to the world’s oceans. Nature communications, 8(1), 1-10. (2017)

    Leslie, H., Brandsma, S., Van Velzen, M., & Vethaak, A. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment international, 101, 133-142. (2017)

    Li, Wang, X., Fu, W., Xia, X., Liu, C., Min, J., Zhang, W., & Crittenden, J. C. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling. Water Research, 161, 486-495. (2019)

    Li, J., Liu, H., & Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res, 137, 362-374. (2018)

    Li, Q., Wu, J., Zhao, X., Gu, X., & Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ Pollut, 254(Pt B), 113076. (2019)

    Li, Q., Wu, J., Zhao, X., Gu, X., & Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution, 254, 113076. (2019)

    Lu, H.-C., Ziajahromi, S., Neale, P. A., & Leusch, F. D. L. A systematic review of freshwater microplastics in water and sediments: Recommendations for harmonisation to enhance future study comparisons. Science of the Total Environment, 781, 146693. (2021)

    Lusher, A. L., Bråte, I. L. N., Munno, K., Hurley, R. R., & Welden, N. A. Is it or isn't it: the importance of visual classification in microplastic characterization. Applied spectroscopy, 74(9), 1139-1153. (2020)

    Lv, L., Qu, J., Yu, Z., Chen, D., Zhou, C., Hong, P., Sun, S., & Li, C. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Environ Pollut, 255(Pt 2), 113283. (2019)

    Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6), 315-320. (2014)

    Patterson, J., Jeyasanta, K. I., Laju, R. L., Booth, A. M., Sathish, N., & Edward, J. K. P. Microplastic in the coral reef environments of the Gulf of Mannar, India - Characteristics, distributions, sources and ecological risks. Environ Pollut, 298, 118848. (2022)

    Perez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G., & Shruti, V. C. Coverage of microplastic data underreporting and progress toward standardization. Sci Total Environ, 829, 154727. (2022)

    Pfohl, P., Roth, C., Meyer, L., Heinemeyer, U., Gruendling, T., Lang, C., Nestle, N., Hofmann, T., Wohlleben, W., & Jessl, S. Microplastic extraction protocols can impact the polymer structure. Microplastics and Nanoplastics, 1(1). (2021)

    Piehl, S., Leibner, A., Loder, M. G. J., Dris, R., Bogner, C., & Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep, 8(1), 17950. (2018)

    PlasticEurope. EU plastics production and demand – first estimates for 2020. (2021)

    Prata, J. C., Alves, J. R., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Sci Total Environ, 719, 137498. (2020)

    Prata, J. C., Reis, V., Matos, J. T. V., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Sci Total Environ, 690, 1277-1283. (2019)

    Prata, J. C., Sequeira, I. F., Monteiro, S. S., Silva, A. L. P., da Costa, J. P., Dias-Pereira, P., Fernandes, A. J. S., da Costa, F. M., Duarte, A. C., & Rocha-Santos, T. Preparation of biological samples for microplastic identification by Nile Red. Sci Total Environ, 783, 147065. (2021)

    Quinn, B., Murphy, F., & Ewins, C. Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, 9(9), 1491-1498. (2017)

    Ranjani, M., Veerasingam, S., Venkatachalapathy, R., Mugilarasan, M., Bagaev, A., Mukhanov, V., & Vethamony, P. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. Mar Pollut Bull, 163, 111969. (2021)

    Rodrigues, M. O., Abrantes, N., Gonçalves, F. J. M., Nogueira, H., Marques, J. C., & Gonçalves, A. M. M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci Total Environ, 633, 1549-1559. (2018)

    Shanmugam, V., Das, O., Neisiany, R. E., Babu, K., Singh, S., Hedenqvist, M. S., Berto, F., & Ramakrishna, S. Polymer Recycling in Additive Manufacturing: an Opportunity for the Circular Economy. Materials Circular Economy, 2(1). (2020)

    Shim, W. J., Song, Y. K., Hong, S. H., & Jang, M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull, 113(1-2), 469-476. (2016)

    Shruti, V. C., Perez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. J Hazard Mater, 423(Pt B), 127171. (2022)

    Song, Y. K., Hong, S. H., Jang, M., Han, G. M., & Shim, W. J. Occurrence and Distribution of Microplastics in the Sea Surface Microlayer in Jinhae Bay, South Korea. Arch Environ Contam Toxicol, 69(3), 279-287. (2015)

    Stanton, T., Johnson, M., Nathanail, P., Gomes, R. L., Needham, T., & Burson, A. Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach. Environmental Science & Technology Letters, 6(10), 606-611. (2019)

    Sturm, M. T., Horn, H., & Schuhen, K. The potential of fluorescent dyes-comparative study of Nile red and three derivatives for the detection of microplastics. Anal Bioanal Chem, 413(4), 1059-1071. (2021)

    Su, L., Deng, H., Li, B., Chen, Q., Pettigrove, V., Wu, C., & Shi, H. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 365, 716-724. (2019)

    Tamminga, M., Stoewer, S.-C., & Fischer, E. K. On the representativeness of pump water samples versus manta sampling in microplastic analysis. Environmental Pollution, 254, 112970. (2019)

    Tien, C.-J., Wang, Z.-X., & Chen, C. S. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environmental Pollution, 265, 114962. (2020)

    van Raamsdonk, L. W. D., van der Zande, M., Koelmans, A. A., Hoogenboom, R., Peters, R. J. B., Groot, M. J., Peijnenburg, A., & Weesepoel, Y. J. A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods, 9(1). (2020)

    Wang, Wang, M., Ru, S., & Liu, X. High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Science of the Total Environment, 651, 1661-1669. (2019)

    Wang, C., Jiang, L., Liu, R., He, M., Cui, X., & Wang, C. Comprehensive assessment of factors influencing Nile red staining: Eliciting solutions for efficient microplastics analysis. Mar Pollut Bull, 171, 112698. (2021)

    Wiggin, K. J., & Holland, E. B. Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California. Marine Pollution Bulletin, 143, 152-162. (2019)

    Wong, G., Löwemark, L., & Kunz, A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: Spatial heterogeneity and correlation with precipitation. Environmental Pollution, 260, 113935. (2020)

    Zhang, Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C., & Lam, P. K. S. Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management. Science of the Total Environment, 630, 1641-1653. (2018)

    Zhang, Y., Pu, S., Lv, X., Gao, Y., & Ge, L. Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400, 123110. (2020)

    下載圖示 校內:2024-08-31公開
    校外:2025-08-31公開
    QR CODE