| 研究生: |
林易賢 Lin, Yi-Xian |
|---|---|
| 論文名稱: |
熱電發電器系統之研究:計算流體力學和熱電發電器的整合及材料性質之影響 Investigation of a thermoelectric generator system: Integration of computational fluid dynamics and thermoelectric generator and the effect of material properties. |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 熱電發電器 、熱源 、吸熱源 、材料性質 、溫度依賴性 、計算流體力學 、數值模擬 |
| 外文關鍵詞: | Thermoelectric generators, Source termHeat sink, Material properties, Temperature-dependent, Computational fluid dynamics, Numerical simulation. |
| 相關次數: | 點閱:149 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來熱電技術很有發展前景。熱電發電器(thermoelectric generator)是一種可以回收廢熱並將廢熱轉化為電能的裝置。熱電發電器是個可以廣泛用於許多產業的綠色能源。本研究對熱電發電器系統的研究,分為兩部分。第一部分為開發先進的熱電模擬技術,此技術整合了計算流體動力學(computational fluid dynamics)和熱電模組(TEM);第二部分是對溫度依賴性的材料進行熱電發電器性能的分析。
在第一部分的研究中,開發一種先進的模擬技術,本研究成功整合計算流體動力學和熱電模組,其中熱電模組被視為一個吸熱源以吸收煙氣中的廢熱。為了模擬從煙氣中收集廢熱的熱電發電器的實際性能,本研究評估了雷諾數、冷面對流係數、煙氣的入口溫度、兩個熱電模組以及煙道之幾何形狀對熱電模組的影響。其結果顯示當雷諾數、煙氣入口溫度與冷面的對流係數上升時,將提高熱電模組的性能。在兩個熱電模組系統中,位於上游的熱電模組的性能非常接近於單個熱電模組。與單個熱電模組相比,兩個熱電模組可以提升43%的輸出功率。然而,這也意味著位於下游的熱電模組的輸出功率與位於上游的熱電模組相比下降了57%,這是因為上游熱電模組對下游熱電模組的影響。當修改煙道幾何形狀以提高雷諾數達到1,000的煙氣速度時,輸出功率和效率能達到53.51%和25.2%的提升。
第二部分的目的是針對四種不同的熱電發電器材料提供一個完整的分析,其材料性質具有恆定和溫度依賴的特性。通過數值模擬並分析了各元件之間溫差、冷面溫度以及熱面溫度振盪對發電機性能的影響。結果顯示,可變性質材料的輸出功率、溫差平方規則以及阻抗匹配的結果皆偏離了具有恆定性質的結果,但其結果依然擁有自身一致性。在給定的溫差下,冷面溫度的降低可能會增強或降低其性能,這取決於所採用的材料特性。振盪熱面溫度可以增加或減少輸出功率和效率。總之,熱電發電器的實際性能及其與理論性能的偏差很大程度上取決於所採用的材料性質。因此,與具有恆定性質的預測相比,考慮可變性質可以提供更真實的結果。
The thermoelectric technology has the prospect in recent years. Thermoelectric generator (TEG) is a device that can recover waste heat and convert waste heat into electricity. TEGs can be extensively employed for green power generation in many industries. This study of a thermoelectric generator system is divided into two parts. The first part develops an advance simulation technology which integrates computational fluid dynamics (CFD) and a thermoelectric module (TEM); the second part is a comprehensive analysis on the performance of thermoelectric generators with different material properties.
In the first part, an advanced simulation technology, integrating computational fluid dynamics (CFD) and a thermoelectric module (TEM), is developed where the TEM is modeled as a heat sink to absorb waste heat from flue gases. To approach the realistic performance of thermoelectric generators harvesting waste heat from flue gas, the influences of Reynolds number, convection heat transfer coefficient at the cold surface, flue gas inlet temperature, dual TEM, and channel geometry on the performance of the TEM system are evaluated. The results clearly provide a measure in increasing the performance of TEM with rising the Reynolds number, flue gas inlet temperature, and convection heat transfer coefficient at the cold surface. In the dual TEM system, the performance of the leading TEM is very close to that of the single TEM, and the dual TEM can produce an additional 43% power when compared with the single TEM. However, this also implies that the output power of the trailing TEM drops 57% when compared to the leading one, stemming for its impact upon the downstream TEM. When the channel geometry is modified to raise the flue gas velocity at Re=1,000, the output power and efficiency with 53.51% and 25.2% improvements are achieved.
The purpose of second part is to provide a comprehensive study on power generation of thermoelectric generators using four different materials with constant and temperature-dependent properties. The influences of the temperature difference across the elements, the temperature at the cold side surface, and the temperature oscillation at the hot side surface on the performance of the generators are simulated numerically and analyzed systematically. The predictions indicate that the output power, temperature-difference square rule, and impedance matching of the materials with the variable properties deviate from the theoretical results with constant properties, but their behavior always obeys the self-consistency. At a given temperature difference, a decrease in the cold surface temperature may intensify or abate the performance, depending on the material properties adopted. Oscillating the hot surface temperature may increase or decrease the output power and efficiency. In summary, the practical performance of a thermoelectric generator and its deviation from the theoretical performance depend strongly on the properties adopted. Therefore, the consideration of the variable properties of material can provide a more realistic outcome compared to the predictions with constant properties.
References
[1]Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews. 2016;57:1568-79.
[2]Chen W-H, Wang C-C, Hung C-I. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Conversion and Management. 2014;87:566-75.
[3]Riffat SB, Ma X. Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering. 2003;23:913-35.
[4]Wang Y, Shi Y, Mei D, Chen Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy. 2018;215:690-8.
[5]Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Applied Energy. 2017;185:1336-42.
[6]Su H, Zhou F, Qi H, Li J. Design for thermoelectric power generation using subsurface coal fires. Energy. 2017;140:929-40.
[7]Jiang W, Yuan D, Xu S, Hu H, Xiao J, Sha A, et al. Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy. 2017;205:941-50.
[8]Allouhi A, Boharb A, Ratlamwala T, Kousksou T, Amine MB, Jamil A, et al. Dynamic analysis of a thermoelectric heating system for space heating in a continuous-occupancy office room. Applied Thermal Engineering. 2017;113:150-9.
[9]Lertsatitthanakorn C. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresour Technol. 2007;98:1670-4.
[10]Fernández-Yañez P, Armas O, Capetillo A, Martínez-Martínez S. Thermal analysis of a thermoelectric generator for light-duty diesel engines. Applied Energy. 2018;226:690-702.
[11]Zhao Y, Wang S, Ge M, Li Y, Liang Z, Yang Y. Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery. Applied Energy. 2018;228:2080-9.
[12]Muralidhar N, Himabindu M, Ravikrishna RV. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator. Energy. 2018;148:1046-59.
[13]Fan S, Gao Y. Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator. Energy. 2018;150:38-48.
[14]Bai W, Yuan X, Liu X. Numerical investigation on the performances of automotive thermoelectric generator employing metal foam. Applied Thermal Engineering. 2017;124:178-84.
[15]Jia X, Gao Y. Optimal design of a novel thermoelectric generator with linear-shaped structure under different operating temperature conditions. Applied Thermal Engineering. 2015;78:533-42.
[16]Tappura K. A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications. Renewable Energy. 2018;120:78-87.
[17]Chen W-H, Huang S-R, Wang X-D, Wu P-H, Lin Y-L. Performance of a thermoelectric generator intensified by temperature oscillation. Energy. 2017;133:257-69.
[18]Meng J-H, Zhang X-X, Wang X-D. Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses. International Journal of Heat and Mass Transfer. 2015;80:227-35.
[19]Vikhor LN, Anatychuk LI. Theoretical evaluation of maximum temperature difference in segmented thermoelectric coolers. Applied Thermal Engineering. 2006;26:1692-6.
[20]Chen W-H, Wang C-C, Hung C-I, Yang C-C, Juang R-C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy. 2014;64:287-97.
[21]Wang X-D, Huang Y-X, Cheng C-H, Ta-Wei Lin D, Kang C-H. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy. 2012;47:488-97.
[22]Meng J-H, Wang X-D, Zhang X-X. Transient modeling and dynamic characteristics of thermoelectric cooler. Applied Energy. 2013;108:340-8.
[23]Komisarchik G, Gelbstein Y, Fuks D. Solubility of Ti in thermoelectric PbTe compound. Intermetallics. 2017;89:16-21.
[24]Choi H, Jeong K, Chae J, Park H, Baeck J, Kim TH, et al. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy. 2018.
[25]Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy & Environmental Science. 2012;5:5246-51.
[26]Liu D, Zhang Y, Kang H, Li J, Chen Z, Wang T. Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. Journal of the European Ceramic Society. 2018;38:807-11.
[27]Li Z, Chen Y, Li J-F, Chen H, Wang L, Zheng S, et al. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy. 2016;28:78-86.
[28]Zhou J, Chen Z, Sun Z. Hydrothermal synthesis and thermoelectric transport properties of PbTe nanocubes. Materials Research Bulletin. 2015;61:404-8.
[29]Diez J-C, Rasekh S, Madre MA, Torres MA, Sotelo AE. High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt. Boletín de la Sociedad Española de Cerámica y Vidrio. 2018;57:1-8.
[30]Su C-H. Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications. Materials Science in Semiconductor Processing. 2016;56:94-9.
[31]Lei Y, Cheng C, Li Y, Wan R, Wang M. Microwave synthesis and enhancement of thermoelectric figure of merit in half-Heusler TiNiSbxSn1−x. Ceramics International. 2017;43:9343-7.
[32]Zhao Y, Liao X-H, Hong J-M, Zhu J-J. Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods. Materials Chemistry and Physics. 2004;87:149-53.
[33]Li J-F, Liu W-S, Zhao L-D, Zhou M. High-performance nanostructured thermoelectric materials. Npg Asia Materials. 2010;2:152.
[34]Chen W-H, Wu P-H, Lin Y-L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy. 2018;209:211-23.
[35]Lan S, Yang Z, Chen R, Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Applied Energy. 2018;210:327-38.
[36]Zhao Y, Wang S, Ge M, Liang Z, Liang Y, Li Y. Performance analysis of automobile exhaust thermoelectric generator system with media fluid. Energy Conversion and Management. 2018;171:427-37.
[37]Hsu C-T, Huang G-Y, Chu H-S, Yu B, Yao D-J. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Applied Energy. 2011;88:1291-7.
[38]Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy. 2008;33:1311-9.
[39]Chen W-H, Huang S-R, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158:44-54.
[40]Yeo YH, Oh TS. Thermoelectric properties of p-type (Bi,Sb)2Te3 nanocomposites dispersed with multiwall carbon nanotubes. Materials Research Bulletin. 2014;58:54-8.
[41]Battiston S, Fanciulli C, Fiameni S, Famengo A, Fasolin S, Fabrizio M. One step synthesis and sintering of Ni and Zn substituted tetrahedrite as thermoelectric material. Journal of Alloys and Compounds. 2017;702:75-83.
[42]Zhang SN, Zhu TJ, Yang SH, Yu C, Zhao XB. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. Journal of Alloys and Compounds. 2010;499:215-20.
[43]Wang T-H, Wang Q-H, Leng C, Wang X-D. Parameter analysis and optimal design for two-stage thermoelectric cooler. Applied Energy. 2015;154:1-12.
[44]Sharp J, Bierschenk J, Lyon HB. Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management. Proceedings of the IEEE. 2006;94:1602-12.
[45]Meng J-H, Zhang X-X, Wang X-D. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources. 2014;245:262-9.
[46]Wang C-C, Hung C-I, Chen W-H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy. 2012;39:236-45.
[47]Antonova. EE, Looman. DC. Finite elements for thermoelectric device analysis in ANSYS. In: 24th international conference on thermoelectrics 215-8.
[48]Yan Y, Malen JA. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science. 2013;6:1267.
[49]Silvester. PP, Ferrari. RL. Finite elements for electrical engineers. 3rd ed New York: Cambridge University Press. 1996.
[50]Chen M, Rosendahl LA, Condra T. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer. 2011;54:345-55.
[51]He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy. 2015;143:1-25.
[52]Zheng XF, Liu CX, Yan YY, Wang Q. A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews. 2014;32:486-503.
[53]Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy. 2011;36:1518-26.
[54]Lesage FJ, Pagé-Potvin N. Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy Conversion and Management. 2013;66:98-105.
[55]Sahin AZ, Yilbas BS. The influence of operating and device parameters on the maximum efficiency and the maximum output power of thermoelectric generator. International Journal of Energy Research. 2012;36:111-9.
[56]Remeli MF, Tan L, Date A, Singh B, Akbarzadeh A. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management. 2015;91:110-9.
[57]Chen W-H, Wu P-H, Wang X-D, Lin Y-L. Power output and efficiency of a thermoelectric generator under temperature control. Energy Conversion and Management. 2016;127:404-15.
[58]Wen J, Yang H, Tong X, Li K, Wang S, Li Y. Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Conversion and Management. 2016;117:482-9.
[59]Wang L, Kolios A, Nishino T, Delafin P-L, Bird T. Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Composite Structures. 2016;153:123-38.
[60]Barma MC, Riaz M, Saidur R, Long BD. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater. Energy Conversion and Management. 2015;98:303-13.
[61]Bomberger CC, Attia PM, Prasad AK, Zide JMO. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics. Applied Thermal Engineering. 2013;56:152-8.
[62]Snarskii AA, Bezsudnov IV. Rotating thermoelectric device in periodic steady state. Energy Conversion and Management. 2015;94:103-11.
[63]Aswal DK, Basu R, Singh A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management. 2016;114:50-67.
[64]Dai YJ, Hu HM, Ge TS, Wang RZ, Kjellsen P. Investigation on a mini-CPC hybrid solar thermoelectric generator unit. Renewable Energy. 2016;92:83-94.
[65]He W, Su Y, Wang YQ, Riffat SB, Ji J. A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors. Renewable Energy. 2012;37:142-9.
[66]Bonin R, Boero D, Chiaberge M, Tonoli A. Design and characterization of small thermoelectric generators for environmental monitoring devices. Energy Conversion and Management. 2013;73:340-9.
[67]Fan L, Zhang G, Wang R, Jiao K. A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area. Energy Conversion and Management. 2016;122:85-94.
[68]Jang B, Han S, Kim J-Y. Optimal design for micro-thermoelectric generators using finite element analysis. Microelectronic Engineering. 2011;88:775-8.
[69]Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy. 2010;87:3131-6.
[70]Zheng XF, Yan YY, Simpson K. A potential candidate for the sustainable and reliable domestic energy generation–Thermoelectric cogeneration system. Applied Thermal Engineering. 2013;53:305-11.
[71]Madan D, Wang Z, Wright PK, Evans JW. Printed flexible thermoelectric generators for use on low levels of waste heat. Applied Energy. 2015;156:587-92.