簡易檢索 / 詳目顯示

研究生: 黃士修
Huang, Shih-Hsiu
論文名稱: 反射式超穎光學:從寬頻響應到多重高品質因子共振於微型奈米光學系統之應用
Reflective meta-optics: From broadband response to multiple high-Q resonances for low-profile nanophotonic systems
指導教授: 吳品頡
Wu, Pin-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 147
中文關鍵詞: 電漿子超穎介面寬頻折射率感測器嵌入式超穎介面微腔多重高Q值共振多通道全像影像結構色刻印光學加密快照式高光譜影像小數據學習
外文關鍵詞: Plasmonic metasurface, Broadband refractive index sensing, Metasurface-embedded microcavity, Multiple high-Q resonances, Multi-channel holographic, Structural color printing, Optical encryption, Snapshot hyperspectral imaging, Small-data learning
相關次數: 點閱:97下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿子超穎介面由多個金屬奈米集合而成,除了只需簡單的製程步驟,還具有微小的體積和靈活的光調控能力等優勢,可以解決以往傳統光學元件應用在微型系統時所遇到儀器厚重的問題。此外,經由精心的優化和設計,電漿子超穎介面可以在所需的工作波長範圍內實現高光學效率的多功能應用。然而,以往要利用超穎介面達到多波長高Q值的共振,常常需要引入複雜的共振模態或是使用交錯式/分割式的超穎介面,從而在單一超穎介面晶片下產生多重共振響應。此外,以上的方法通常會遇到需要更複雜的樣品製備過程,抑或是因複合結構的設計造成較低的光學轉換效率。
    本文的研究中先是研究電漿子超穎介面的寬頻響應特性,並應用於無需光譜儀的電漿子感測器,從而實現寬頻的折射率感測。接著,引入共振腔和電漿子超穎介面之間的交互作用,除了產生單波長高品質因子共振並同時動態操控雷射源之偏振態,還可以利用厚度漸變的DBR作為基板,在寬的波長範圍內產生多波長的高Q值共振。相較於先前研究中激發的多重共振,我們提出的方法具有更簡單的設計和更高的工作效率,並且將其應用在多通道全像影像、結構色刻印、光學加密和快照式高光譜影像系統。因此,以上我們的研究由於新穎和突破性的設計,有望應用在新一代的微型光學系統中。

    Plasmonic metasurfaces composed of numerous metallic nanostructures possess simple fabrication process, compact physical size and flexible light manipulation, which can address the issue of bulky instruments with conventional optical components in miniaturized systems. Through careful optimization and design, plasmonic metasurfaces can achieve high optical conversion efficiency in multifunctional applications within the specific working wavelength range. However, realizing multiple high-Q resonances in a metasurfaces chip often relied on mode hybridization or introduction of interleaved/segmented metasurface, which typically requires complicated fabrication processes. In addition, these approaches also result in lower optical conversion efficiency due to the design of composite nanostructures.
    In this work, we began from investigating the broadband response characteristics of plasmonic metasurfaces and develop plasmonic sensors without the requirement of spectrometers to realize broadband refractive index sensing. Next, by introducing the interaction between Fabry–Pérot cavity and plasmonic metasurface, the single high-Q resonance at designed wavelength was generated. Furthermore, the polarization state of the laser source can be dynamically controlled by rotating the whole microcavity. Then, a gradient-thickness DBR was introduced in metasurface to generate multiple high-Q resonances over wide wavelength range. Compared to previous studies, our approach offers a simpler design and higher working efficiency, which can be used in various applications like multi-channel holographic, structural color printing, and snapshot hyperspectral imaging systems. Therefore, benefited from its novel and breakthrough design, our research holds promise for applications in the next generation of miniaturized optoelectronic systems.

    口試合格證明 I 中文摘要 II 英文摘要 III 致謝 XIV 目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 電漿子超穎介面 2 1.3 高品質因子共振之超穎介面 3 1.4 多波長共振之超穎介面 8 1.5 幾何相位調製 11 1.6 廣義司乃爾定律 12 第二章 數值模擬方法以及樣品製備 15 2.1 數值模擬方法 15 2.2 超穎介面樣品的製備 17 第三章 電漿子梯度超穎介面於寬頻光學感測之開發 19 3.1 研究動機 19 3.2 電漿子超穎原子之設計與分析 22 3.3 可見光寬頻折射率檢測 26 3.4 電漿子光學感測器之討論與突破 31 第四章 嵌入式超穎介面微腔於雷射源之偏振態調控 32 4.1 研究動機 32 4.2 嵌入式超穎介面之設計與分析 35 4.3 嵌入式超穎介面於微腔雷射之偏振態調控 38 4.4 嵌入式超穎介面於微腔之雷射振盪過程 48 4.5 嵌入式超穎介面於微腔雷射之討論與突破 52 第五章 多波長高品質因子超穎介面之開發與應用 54 5.1 研究動機 54 5.2 多重共振超穎介面之設計與分析 56 5.3 多重共振高Q值超穎介面之光學調製 71 5.4 向量全像與結構色刻印 74 5.5 多重共振超穎介面用於向量全像影像與結構色刻印結合之光學加密 79 5.6 多重高Q值共振超穎介面之討論與突破 80 第六章 多重共振超穎介面輔助之快照式高光譜影像 82 6.1 研究動機 82 6.2 多波長離軸聚焦超穎平面鏡的多重共振超穎原子設計 86 6.3 多波長離軸聚焦超穎平面鏡的聚焦和成像性能 90 6.4 快照式高光譜影像重建 95 6.5 基於超穎介面與CODE理論的快照式高光譜影像之討論與突破 103 第七章 結論 105 參考文獻 107 附錄:個人著作和獲獎紀錄 114

    [1] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
    [2] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
    [3] P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters 17, 445-452 (2017).
    [4] Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).
    [5] H. Ahmed, H. Kim, Y. Zhang, Y. Intaravanne, J. Jang, J. Rho, S. Chen, and X. Chen, "Optical metasurfaces for generating and manipulating optical vortex beams," Nanophotonics 11, 941-956 (2022).
    [6] Y. Hong, Y.-M. Huh, D. S. Yoon, and J. Yang, "Nanobiosensors based on localized surface plasmon resonance for biomarker detection," Journal of Nanomaterials 2012, 759830 (2012).
    [7] W.-C. Hsu, C.-H. Chang, Y.-H. Hong, H.-C. Kuo, and Y.-W. Huang, "Metasurface- and PCSEL-based structured light for monocular depth perception and facial recognition," Nano Letters 24, 1808-1815 (2024).
    [8] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, "Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials," Science 361, 1101-1104 (2018).
    [9] Z. Zheng, D. Rocco, H. Ren, O. Sergaeva, Y. Zhang, K. B. Whaley, C. Ying, D. de Ceglia, C. De-Angelis, M. Rahmani, and L. Xu, "Advances in nonlinear metasurfaces for imaging, quantum, and sensing applications," Nanophotonics 12, 4255-4281 (2023).
    [10] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, "Nonlinear fano-resonant dielectric metasurfaces," Nano Letters 15, 7388-7393 (2015).
    [11] M. Semmlinger, M. Zhang, M. L. Tseng, T.-T. Huang, J. Yang, D. P. Tsai, P. Nordlander, and N. J. Halas, "Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface," Nano Letters 19, 8972-8978 (2019).
    [12] G. Vecchi, V. Giannini, and J. Gómez Rivas, "Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas," Physical Review B 80, 201401 (2009).
    [13] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, "Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum," Physical Review Letters 121, 193903 (2018).
    [14] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, "Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces," Nature Photonics 13, 390-396 (2019).
    [15] B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, "GaN metalens for pixel-level full-color routing at visible light," Nano Letters 17, 6345-6352 (2017).
    [16] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
    [17] C.-H. Lin, S.-H. Huang, T.-H. Lin, and P. C. Wu, "Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory," Nature Communications 14, 6979 (2023).
    [18] J. Xiong, X. Cai, K. Cui, Y. Huang, J. Yang, H. Zhu, W. Li, B. Hong, S. Rao, Z. Zheng, S. Xu, Y. He, F. Liu, X. Feng, and W. Zhang, "Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces," Optica 9, 461-468 (2022).
    [19] P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, "Visible metasurfaces for on-chip polarimetry," ACS Photonics 5, 2568-2573 (2018).
    [20] M. K. Chen, X. Liu, Y. Wu, J. Zhang, J. Yuan, Z. Zhang, and D. P. Tsai, "A meta-device for intelligent depth perception," Advanced Materials 35, 2107465 (2023).
    [21] A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, "Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval," Science Advances 5, eaaw2871.
    [22] P. C. Wu, G. Sun, W. T. Chen, K.-Y. Yang, Y.-W. Huang, Y.-H. Chen, H. L. Huang, W.-L. Hsu, H. P. Chiang, and D. P. Tsai, "Vertical split-ring resonator based nanoplasmonic sensor," Applied Physics Letters 105, 033105 (2014).
    [23] Y.-T. Lin, A. Hassanfiroozi, W.-R. Jiang, M.-Y. Liao, W.-J. Lee, and P. C. Wu, "Photoluminescence enhancement with all-dielectric coherent metasurfaces," Nanophotonics 11, 2701-2709 (2022).
    [24] A. Hassanfiroozi, P.-S. Huang, S.-H. Huang, K.-I. Lin, Y.-T. Lin, C.-F. Chien, Y. Shi, W.-J. Lee, and P. C. Wu, "A toroidal-fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared," Advanced Optical Materials 9, 2101007 (2021).
    [25] J. Yao, J.-Y. Ou, V. Savinov, M. K. Chen, H. Y. Kuo, N. I. Zheludev, and D. P. Tsai, "Plasmonic anapole metamaterial for refractive index sensing," PhotoniX 3, 23 (2022).
    [26] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Letters 10, 2342-2348 (2010).
    [27] A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science 360, 1105-1109 (2018).
    [28] D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, "Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces," Nature Communications 9, 2160 (2018).
    [29] S.-H. Huang, and P. C. Wu, "Exploring plasmonic gradient metasurfaces for enhanced optical sensing in the visible spectrum," Nanophotonics 13, 1099-1108 (2024).
    [30] S.-J. Tang, P. H. Dannenberg, A. C. Liapis, N. Martino, Y. Zhuo, Y.-F. Xiao, and S.-H. Yun, "Laser particles with omnidirectional emission for cell tracking," Light: Science & Applications 10, 23 (2021).
    [31] C. Wang, C. Gong, Y. Zhang, Z. Qiao, Z. Yuan, Y. Gong, G.-E. Chang, W.-C. Tu, and Y.-C. Chen, "Programmable rainbow-colored optofluidic fiber laser encoded with topologically structured chiral droplets," ACS Nano 15, 11126-11136 (2021).
    [32] Z. Yuan, Y. Zhou, Z. Qiao, C. Eng Aik, W.-C. Tu, X. Wu, and Y.-C. Chen, "Stimulated chiral light–matter interactions in biological microlasers," ACS Nano 15, 8965-8975 (2021).
    [33] Z. Yuan, X. Cheng, Y. Zhou, X. Tan, X. Gong, H. Rivy, C. Gong, X. Fan, W.-J. Wang, and Y.-C. Chen, "Distinguishing small molecules in microcavity with molecular laser polarization," ACS Photonics 7, 1908-1914 (2020).
    [34] N. Hafi, M. Grunwald, L. S. van den Heuvel, T. Aspelmeier, J.-H. Chen, M. Zagrebelsky, O. M. Schütte, C. Steinem, M. Korte, A. Munk, and P. J. Walla, "Fluorescence nanoscopy by polarization modulation and polarization angle narrowing," Nature Methods 11, 579-584 (2014).
    [35] M. Wang, M. Chen, K. Zhanghao, X. Zhang, Z. Jing, J. Gao, M. Q. Zhang, D. Jin, Z. Dai, P. Xi, and Q. Dai, "Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information," Nanoscale 10, 19757-19765 (2018).
    [36] A. E. Siegman, Lasers (University Science Books, 1986).
    [37] M. Wang, Y. Lin, J.-M. Yi, D.-Y. Li, J.-P. Liu, B. Cao, C.-H. Wang, J.-F. Wang, and K. Xu, "High-efficiency circularly polarized green light emission from GaN-based laser diodes integrated with GaN metasurface quarterwave plate," Applied Physics Letters 119, 241103 (2021).
    [38] L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, "Metasurface quantum-cascade laser with electrically switchable polarization," Optica 4, 468-475 (2017).
    [39] H. Sroor, Y.-W. Huang, B. Sephton, D. Naidoo, A. Vallés, V. Ginis, C.-W. Qiu, A. Ambrosio, F. Capasso, and A. Forbes, "High-purity orbital angular momentum states from a visible metasurface laser," Nature Photonics 14, 498-503 (2020).
    [40] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, "Functional and nonlinear optical metasurfaces," Laser & Photonics Reviews 9, 195-213 (2015).
    [41] A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-emitting metasurfaces," Nanophotonics 8, 1151-1198 (2019).
    [42] A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Ultrathin and multicolour optical cavities with embedded metasurfaces," Nature Communications 9, 2673 (2018).
    [43] Z. Yuan, S.-H. Huang, Z. Qiao, P. C. Wu, and Y.-C. Chen, "Metasurface-tunable lasing polarizations in a microcavity," Optica 10, 269-278 (2023).
    [44] Z. Wang, Y. Wang, G. Adamo, J. Teng, and H. Sun, "Induced optical chirality and circularly polarized emission from achiral CdSe/ZnS quantum dots via resonantly coupling with plasmonic chiral metasurfaces," Laser & Photonics Reviews 13, 1800276 (2019).
    [45] N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chemical Reviews 111, 3913-3961 (2011).
    [46] J.-H. Yang, and K.-P. Chen, "Hybridization of plasmonic and dielectric metasurfaces with asymmetric absorption enhancement," Journal of Applied Physics 128, 133101 (2020).
    [47] J. Rodríguez-Álvarez, A. Labarta, J. C. Idrobo, R. Dell’Anna, A. Cian, D. Giubertoni, X. Borrisé, A. Guerrero, F. Perez-Murano, A. Fraile Rodríguez, and X. Batlle, "Imaging of antiferroelectric dark modes in an inverted plasmonic lattice," ACS Nano 17, 8123-8132 (2023).
    [48] S. Baur, S. Sanders, and A. Manjavacas, "Hybridization of lattice resonances," ACS Nano 12, 1618-1629 (2018).
    [49] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen, G. Carlow, B. T. Sullivan, J.-M. Ménard, K. Dolgaleva, and R. W. Boyd, "Multiresonant high-Q plasmonic metasurfaces," Nano Letters 19, 6429-6434 (2019).
    [50] M. Lawrence, D. R. Barton, J. Dixon, J.-H. Song, J. van de Groep, M. L. Brongersma, and J. A. Dionne, "High quality factor phase gradient metasurfaces," Nature Nanotechnology 15, 956-961 (2020).
    [51] P. C. Wu, R. A. Pala, G. Kafaie Shirmanesh, W.-H. Cheng, R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, and H. A. Atwater, "Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces," Nature Communications 10, 3654 (2019).
    [52] S. C. Malek, A. C. Overvig, A. Alù, and N. Yu, "Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces," Light: Science & Applications 11, 246 (2022).
    [53] E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, "Photonic spin-controlled multifunctional shared-aperture antenna array," Science 352, 1202-1206 (2016).
    [54] E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L Brongersma, and E. Hasman, "Multifunctional interleaved geometric-phase dielectric metasurfaces," Light: Science & Applications 6, e17027-e17027 (2017).
    [55] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nature Nanotechnology 13, 220-226 (2018).
    [56] S.-H. Huang, C.-Y. Chen, Y.-C. Lin, Z. Yan, Y. Shi, Q. Song, and P. C. Wu, "Multi-resonant metasurfaces enabled versatile wavefront engineering," under revision.
    [57] Y. Hu, X. Luo, Y. Chen, Q. Liu, X. Li, Y. Wang, N. Liu, and H. Duan, "3D-Integrated metasurfaces for full-colour holography," Light: Science & Applications 8, 86 (2019).
    [58] C. H. Lin, and T. H. Lin, "All-addition hyperspectral compressed sensing for metasurface-driven miniaturized satellite," IEEE Transactions on Geoscience and Remote Sensing 60, 1-15 (2022).
    [59] V. Sowmya, K. P. Soman, and M. Hassaballah, "Hyperspectral image: fundamentals and advances," in Recent Advances in Computer Vision: Theories and Applications, M. Hassaballah, and K. M. Hosny, eds. (Springer International Publishing, 2019), pp. 401-424.
    [60] L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, "Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review," Applied Spectroscopy Reviews 48, 142-159 (2013).
    [61] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Transactions on Geoscience and Remote Sensing 47, 862-873 (2009).
    [62] P. W. Yuen, and M. Richardson, "An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition," The Imaging Science Journal 58, 241-253 (2010).
    [63] X. Hadoux, F. Hui, J. K. H. Lim, C. L. Masters, A. Pébay, S. Chevalier, J. Ha, S. Loi, C. J. Fowler, C. Rowe, V. L. Villemagne, E. N. Taylor, C. Fluke, J.-P. Soucy, F. Lesage, J.-P. Sylvestre, P. Rosa-Neto, S. Mathotaarachchi, S. Gauthier, Z. S. Nasreddine, J. D. Arbour, M.-A. Rhéaume, S. Beaulieu, M. Dirani, C. T. O. Nguyen, B. V. Bui, R. Williamson, J. G. Crowston, and P. van Wijngaarden, "Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease," Nature Communications 10, 4227 (2019).
    [64] G. Nahum, "Imaging spectroscopy using tunable filters: a review," in Proc.SPIE (2000), pp. 50-64.
    [65] T. H. Kim, H. J. Kong, T. H. Kim, and J. S. Shin, "Design and fabrication of a 900–1700nm hyper-spectral imaging spectrometer," Optics Communications 283, 355-361 (2010).
    [66] A. H. Nathan, and W. K. Michael, "Review of snapshot spectral imaging technologies," Optical Engineering 52, 090901 (2013).
    [67] R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "Achromatic metalens array for full-colour light-field imaging," Nature Nanotechnology 14, 227-231 (2019).
    [68] M. Faraji-Dana, E. Arbabi, H. Kwon, S. M. Kamali, A. Arbabi, J. G. Bartholomew, and A. Faraon, "Hyperspectral imager with folded metasurface optics," ACS Photonics 6, 2161-2167 (2019).
    [69] A. McClung, S. Samudrala, M. Torfeh, M. Mansouree, and A. Arbabi, "Snapshot spectral imaging with parallel metasystems," Science Advances 6, eabc7646 (2020).
    [70] S. Colburn, A. Zhan, and A. Majumdar, "Metasurface optics for full-color computational imaging," Science Advances 4, eaar2114 (2018).
    [71] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, "Deep learning for the design of photonic structures," Nature Photonics 15, 77-90 (2021).
    [72] L. Huang, R. Luo, X. Liu, and X. Hao, "Spectral imaging with deep learning," Light: Science & Applications 11, 61 (2022).
    [73] C. Tao, H. Zhu, Y. Zhang, S. Luo, Q. Ling, B. Zhang, Z. Yu, X. Tao, D. Chen, Q. Li, and Z. Zheng, "Shortwave infrared single-pixel spectral imaging based on a GSST phase-change metasurface," Optics Express 30, 33697-33707 (2022).
    [74] Z. Wang, Y.-L. Ho, T. Cao, T. Yatsui, and J.-J. Delaunay, "High-Q and tailorable fano resonances in a one-dimensional metal-optical tamm state structure: from a narrowband perfect absorber to a narrowband perfect reflector," Advanced Functional Materials 31, 2102183 (2021).
    [75] C. H. Lin, Y. C. Lin, and P. W. Tang, "ADMM-ADAM: a new inverse imaging framework blending the advantages of convex optimization and deep learning," IEEE Transactions on Geoscience and Remote Sensing 60, 1-16 (2022).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE