簡易檢索 / 詳目顯示

研究生: 郭力維
Kuo, Li-Wei
論文名稱: 微型核醣核酸 microRNA-150 促進卵巢癌的轉移
The microRNA-150 promotes metastasis in ovarian cancer
指導教授: 洪澤民
Hong, Tse-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 62
中文關鍵詞: 微型核醣核酸卵巢癌復發
外文關鍵詞: MicroRNA, Ovarian cancer, Recurrence
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據世界統計,卵巢癌為女性癌症致死率的第九位,而卵巢癌的高致死率是由於它相當容易復發。特別是轉移型式的復發,或稱遠處復發(復發的位置在遠處而非原發位)。轉移型復發也是卵巢癌的主要致死的原因,因此,此類復發卵巢癌將是未來研究相當重要的課題。這裡我們將焦點放在微型核醣核酸microRNAs (小的非編碼型態的核醣核酸),它的功能主要是去抑制它下游目標基因及其蛋白質的表現。近年來,有許多研究指出微型核醣核酸的異常表現與癌症形成有關。因此,在本研究中,我們認為微型核醣核酸的不正常表現可能與轉移型復發的卵巢癌有關,並且進一步探討其作為生物標誌或治療標地的可能性。我們一開始檢視兩位病人的臨床檢體(分別包含原發腫瘤及復發腫瘤)的microRNA表現圖譜,在合併分析後發現microRNA-150在復發卵巢腫瘤中異常上升,更進一步檢視22對臨床檢體的表現,我們發現到其中16對的復發腫瘤microRNA-150也呈現上升現象。並且藉由GEO資料庫的查詢發現到miR-150的表現量與病人的早期復發及死亡率呈現正相關。接著,探討microRNA-150的功能,我們在microRNA-150表現量較低的BG1卵巢癌細胞株過度表現microRNA-150發現到可以增加細胞移行及侵襲的能力,反之在microRNA-150表現量高的SKOV3則可抑制其移行及侵襲力。此外,利用cDNA microarray分析microRNA-150可能影響的下游目標基因,並結合microRNA目標基因預測軟體及文獻搜尋,我們發現MYB (v-myb myeloblastosis viral oncogene homolog)的mRNA層級會明顯受到microRNA-150的調控,並且可能與細胞移行有關。更進一步探討其目標基因-MYB與細胞移行和侵襲力的影響,發現到在過度表現MYB後會減低細胞移行及侵襲力。並且在臨床檢體中也發現microRNA-150和 MYB 呈現負相關。這些結果證明miR-150的異常上升可能與轉移型復發的卵巢癌的進程有關。miR-150會促進癌細胞的轉移及侵襲能力,極有可能是透過調控MYB。

    Ovarian cancer is the ninth leading cause of global cancer-related deaths. It is associated with high mortality due to high recurrence rates, especially metastatic recurrence. Metastatic recurrence is the main feature of advanced ovarian cancer and a direct cause of death. It is important to identify biomarkers and therapeutic targets for early detection and treatment of metastatic recurrence of ovarian cancer. The focus of our study is on microRNAs (miRNAs), which are small (~22 nt) non-coding RNAs that negatively regulate downstream target genes. They control a wide range of biological functions and their abnormal expression may cause cancer. Thus, we hypothesized that microRNA dysregulation are involved in the recurrence of ovarian cancer. We used microarrays to analyze global microRNA expression in the primary and recurrent tumors of 2 patients. We found that microRNA-150 was upregulated in recurrent tumors in comparison to primary tumors. To verify the relationship between miR-150 expression and cancer recurrence in ovarian cancer, we collected primary and recurrent tumors from 22 clinical patients. miR-150 was upregulated in 16 of these patients. Analysis of 2 Gene Expression Omnibus databases revealed a positive association between miR-150, shorter survival time, and early recurrence. Next, we explored the function of miR-150 in ovarian cancer recurrence in vitro. Expression of miR-150 positively correlated with cell migration; overexpression of miR-150 in BG-1 ovarian cancer cells promoted migration and invasion but did not influence proliferation. In contrast, inhibition of miR-150 in SKOV3 reduced cell migration and invasion. To identify the target genes of miR-150-mediated invasion and migration, we used whole gene expression microarrays. Expression signatures were analyzed with 5 microRNA target prediction software programs, which identified MYB (v-myb myeloblastosis viral oncogene homolog) as a target of miR-150 regulation that is also associated with cell motility and invasion. These results suggest miR-150 upregulation mediates the progression of metastatic recurrence of ovarian cancer. miR-150 promotes tumor cell invasion and migration by targeting the MYB pathway. In the future, we will directly examine the function of miR-150 in metastasis in vivo.

    Contents 中文摘要 I Abstract III Acknowledgements V Contents VII Abbreviation XII Introduction 1 1. Ovarian cancer and recurrence 1 2. Ovarian cancer metastasis 1 3. MicroRNA 2 3.1 Biogenesis of microRNA 2 3.2 Target gene repression 2 4. MicroRNA in cancer 3 5. MicroRNA as an metastatic regulator 4 Rationale and specific aims 5 Material and methods 6 1. Clinical samples 6 2. Cell culture 6 3. In situ hybridization 7 4. Transfection 8 5. Drug treatment 8 6. MicroRNA real-time PCR 8 7. Western blotting 9 8. Lentivirus production for shRNA and miR-150 overexpression 9 9. Real-time quantitative PCR 10 (1) Reverse transcription to cDNA 10 (2) Real-time PCR 10 10. Wound healing migration assay 11 11. Transwell invasion assay 11 12. Cell proliferation assay 11 13. Plasmid construction 12 14. Luciferase reporter assay 13 15. MicroRNA target prediction software 13 16. Analysis of GEO database 13 17. Statistical analysis 13 Results 14 1. MiRNA-150 expression in recurrent ovarian cancer 14 2. MiR-150 promotes cell migration and invasion 15 3. Identification of miR-150 target genes contributing to cell migration and invasion 15 4. miR-150 directly suppresses expression of MYB 16 5. Overexpression of MYB suppressed cell migration and invasion. 16 6. MiR-150 promotes cell motility and invasiveness by targeting MYB 16 7. Expression of miR-150 and MYB in clinical specimens of ovarian cancer 17 8. Characterization of BG1 cells overexpressing miR-150 by lentivirus 17 9. Characterization of SKOV3 cells overexpressing miR-150-specific sponge 17 Discussion 18 1. The previous study of miR-150 18 2. The upstream of miR-150 18 3. Others potential targets of miR-150 mediating cell migration and invasion 19 4. MYB downstream mechanism 19 5. Therapeutic potential of miR-150 in ovarian cancer 20 Conclusion 22 Reference 23 Tables 28 Table 1. Top 50 of upregulated miRNA signatures in two clinical patients with recurrent ovarian cancer. 28 Tables 2. Clinical characteristics of 22 ovarian cancer patients evaluated for miR-150 expression 29 Tables 3 . shRNA used in this study 30 Tables 4. Primers used in this study 31 Tables 4.1 Primers used in real-time PCR 31 Tables 4.2 Primers used in MYB-3’UTR cloning 31 Table 5. Gene expression profiles of miR-150 mediating metastatic signatures 32 Figures 33 Figure 1. miR-150 was upregulated in recurrent ovarian cancer. 33 Figure 2. miR-150 was upregulated in the recurrent tumors of 16 patients with ovarian cancer. 34 Figure 3. Expression of miR-150 correlated with shorter survival time and early recurrence 35 Figure 4. Overexpressing miR-150 did not affect BG1 sensitivity to chemotherapeutic drugs 36 Figure 5. Inhibiting miR-150 did not affect SKOV3 sensitivity to chemotherapeutic drugs 37 Figure 6. miR-150 did not affect cell growth 38 Figure 7. miR-150 expression correlates with cell migration 39 Figure 8. miR-150 promoted cell migration and invasion. 40 Figure 9. Inhibiting miR-150 reduced cell migration and invasion. 42 Figure 10. Identification of putative miR-150 targets 44 Figure 11. MYB expression is regulated by miR-150 45 Figure 12. miR-150 represses MYB expression by directly targeting its 3′UTR. 46 Figure 13. miR-150 expression negatively correlated with the expression level of MYB. 47 Figure 14. Overexpression of MYB reduced cell migration and invasion in SKOV3. 48 Figure 15. MYB knockdown promotes cell migration and invasion. 50 Figure 16. The motility and invasive ability were recovered if miR-150 was inhibited in conjunction with MYB in SKOV3 cells. 52 Figure 17. Expression of miR-150 negatively correlates with the MYB level in clinical specimens. 53 Figure 18. Functional characterization of BG1 cells overexpressed miR-150 by lentivirus. 54 Figure 19. miR-150 overexpression suppressed the expression of its potential target gene in BG1 cells. 55 Figure 20. Expression of miR-150 positively correlates with MYC level in clinical specimens 56 Figure 21. Stably expressing miR-150 sponge reduced cell motility and invasive ability. 57 Figure 22. miR-150 sponge upregulated the expression of MYB. 58 Appendix 59 Appendix I : Reagents 59 Appendix II : Equipment 61 Curriculum Vitae 62

    Cai, X., C. H. Hagedorn and B. R. Cullen (2004). "Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs." RNA 10(12): 1957-1966.
    Calin, G. A., C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce (2004). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers." Proc Natl Acad Sci U S A 101(9): 2999-3004.
    Cano, A. and M. A. Nieto (2008). "Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition." Trends Cell Biol 18(8): 357-359.
    Cesi, V., A. Casciati, F. Sesti, B. Tanno, B. Calabretta and G. Raschella (2011). "TGFbeta-induced c-Myb affects the expression of EMT-associated genes and promotes invasion of ER+ breast cancer cells." Cell Cycle 10(23): 4149-4161.
    Chang, T. C., E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra and J. T. Mendell (2007). "Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis." Mol Cell 26(5): 745-752.
    Denli, A. M., B. B. Tops, R. H. Plasterk, R. F. Ketting and G. J. Hannon (2004)3. "Processing of primary microRNAs by the Microprocessor complex." Nature 432(7014): 231-235.
    Drabsch, Y., R. G. Robert and T. J. Gonda (2010). "MYB suppresses differentiation and apoptosis of human breast cancer cells." Breast Cancer Res 12(4): R55
    Ebert, M. S., J. R. Neilson and P. A. Sharp (2007). "MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells." Nat Methods 4(9): 721-726.
    Forman, J. J., A. Legesse-Miller and H. A. Coller (2008). "A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence." Proc Natl Acad Sci U S A 105(39): 14879-14884.
    Ganter, B. and J. S. Lipsick (1997). "Myb binding sites within the N-ras promoter repress transcription." Oncogene 15(2): 193-202.
    Goff, B. A., L. Mandel, et al. (2000). "Ovarian carcinoma diagnosis." Cancer 89(10): 2068-2075.
    Gregory, R. I., K. P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch and R. Shiekhattar (2004). "The Microprocessor complex mediates the genesis of microRNAs." Nature 432(7014): 235-240.
    Gregory, R. I., T. P. Chendrimada, N. Cooch and R. Shiekhattar (2005). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing." Cell 123(4): 631-640.
    Halkia, E., J. Spiliotis and P. Sugarbaker (2012). "Diagnosis and management of peritoneal metastases from ovarian cancer." Gastroenterol Res Pract 2012: 541842.
    He, L., J. M. Thomson, M. T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S. W. Lowe, G. J. Hannon and S. M. Hammond (2005). "A microRNA polycistron as a potential human oncogene." Nature 435(7043): 828-833.
    Jemal, A., R. Siegel, et al. (2008). "Cancer statistics, 2008." CA Cancer J Clin58(2): 71-96.
    Jiang, X., H. Huang, Z. Li, Y. Li, X. Wang, S. Gurbuxani, P. Chen, C. He, D. You, S. Zhang, J. Wang, S. Arnovitz, A. Elkahloun, C. Price, G. M. Hong, H. Ren, R. B. Kunjamma, M. B. Neilly, J. M. Matthews, M. Xu, R. A. Larson, M. M. Le Beau, R. K. Slany, P. P. Liu, J. Lu, J. Zhang and J. Chen (2012). "Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia." Cancer Cell 22(4): 524-535.
    Johnson, S. M., H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown and F. J. Slack (2005). "RAS is regulated by the let-7 microRNA family." Cell 120(5): 635-647.
    Laios, A., S. A. O'Toole, R. Flavin, C. Martin, M. Ring, N. Gleeson, T. D'Arcy, E. P. McGuinness, O. Sheils, B. L. Sheppard and O. L. JJ (2008). "An integrative model for recurrence in ovarian cancer." Mol Cancer 7: 8.
    Lee, R. C., R. L. Feinbaum and V. Ambros (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell 75(5): 843-854.
    Lee, Y., M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek and V. N. Kim (2004). "MicroRNA genes are transcribed by RNA polymerase II." EMBO J 23(20): 4051-4060.
    Lengyel, E. (2010). "Ovarian cancer development and metastasis." Am J Pathol 177(3): 1053-1064.
    Lujambio, A., S. Ropero, E. Ballestar, M. F. Fraga, C. Cerrato, F. Setien, S. Casado, A. Suarez-Gauthier, M. Sanchez-Cespedes, A. Git, I. Spiteri, P. P. Das, C. Caldas, E. Miska and M. Esteller (2007). "Genetic unmasking of an epigenetically silenced microRNA in human cancer cells." Cancer Res 67(4): 1424-1429.
    Lulla, R. R., F. F. Costa, J. M. Bischof, P. M. Chou, F. B. M. de, E. F. Vanin and M. B. Soares (2011). "Identification of Differentially Expressed MicroRNAs in Osteosarcoma." Sarcoma 2011: 732690.
    Ma, E., I. J. MacRae, J. F. Kirsch and J. A. Doudna (2008). "Autoinhibition of human dicer by its internal helicase domain." J Mol Biol 380(1): 237-243.
    Madhusudan, S., A. Tamir, N. Bates, E. Flanagan, M. E. Gore, D. P. Barton, P. Harper, M. Seckl, H. Thomas, N. R. Lemoine, M. Charnock, N. A. Habib, R. Lechler, J. Nicholls, M. Pignatelli and T. S. Ganesan (2004). "A multicenter Phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene." Clin Cancer Res 10(9): 2986-2996.
    Martello, G., A. Rosato, F. Ferrari, A. Manfrin, M. Cordenonsi, S. Dupont, E. Enzo, V. Guzzardo, M. Rondina, T. Spruce, A. R. Parenti, M. G. Daidone, S. Bicciato and S. Piccolo (2010). "A MicroRNA targeting dicer for metastasis control." Cell 141(7): 1195-1207.
    Soza-Ried, C., I. Hess, N. Netuschil, M. Schorpp and T. Boehm (2010). "Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved." Proc Natl Acad Sci U S A 107(40): 17304-17308.
    Tanno, B., F. Sesti, V. Cesi, G. Bossi, G. Ferrari-Amorotti, R. Bussolari, D. Tirindelli, B. Calabretta and G. Raschella (2010). "Expression of Slug is regulated by c-Myb and is required for invasion and bone marrow homing of cancer cells of different origin." J Biol Chem 285(38): 29434-29445.
    Thorner, A. R., J. S. Parker, K. A. Hoadley and C. M. Perou (2010). "Potential tumor suppressor role for the c-Myb oncogene in luminal breast cancer." PLoS One 5(10): e13073.
    Tusher, V. G., R. Tibshirani and G. Chu (2001). "Significance analysis of microarrays applied to the ionizing radiation response." Proc Natl Acad Sci U S A 98(9): 5116-5121.
    Van Nagell, J. R., Jr., P. D. DePriest, F. R. Ueland, C. P. DeSimone, A. L. Cooper, J. M. McDonald, E. J. Pavlik and R. J. Kryscio (2007). "Ovarian cancer screening with annual transvaginal sonography: findings of 25,000 women screened." Cancer 109(9): 1887-1896.
    Wallner, S., T. Gruber, G. Baier and D. Wolf (2012). "Releasing the brake: targeting Cbl-b to enhance lymphocyte effector functions." Clin Dev Immunol 2012: 692639.
    Watanabe, A., H. Tagawa, J. Yamashita, K. Teshima, M. Nara, K. Iwamoto, M. Kume, Y. Kameoka, N. Takahashi, T. Nakagawa, N. Shimizu and K. Sawada (2011). "The role of microRNA-150 as a tumor suppressor in malignant lymphoma." Leukemia 25(8): 1324-1334.
    Wu, Q., H. Jin, Z. Yang, G. Luo, Y. Lu, K. Li, G. Ren, T. Su, Y. Pan, B. Feng, Z. Xue, X. Wang and D. Fan (2010). "MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2." Biochem Biophys Res Commun 392(3): 340-345.
    Yi, R., Y. Qin, I. G. Macara and B. R. Cullen (2003). "Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs." Genes Dev 17(24): 3011-3016.
    Zhang, Y., D. Liu, X. Chen, J. Li, L. Li, Z. Bian, F. Sun, J. Lu, Y. Yin, X. Cai, Q. Sun, K. Wang, Y. Ba, Q. Wang, D. Wang, J. Yang, P. Liu, T. Xu, Q. Yan, J. Zhang, K. Zen and C. Y. Zhang (2010). "Secreted monocytic miR-150 enhances targeted endothelial cell migration." Mol Cell 39(1): 133-144.
    Zhou, B., S. Wang, C. Mayr, D. P. Bartel and H. F. Lodish (2007). "miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely." Proc Natl Acad Sci U S A 104(17): 7080-7085.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE