| 研究生: |
蔡期全 Tsai, Chi-Chung |
|---|---|
| 論文名稱: |
利用幾何外型與擴散現象控制微流場出口濃度分布之研究 A Study of Geometrical Factor on the Diffusion Concentration Gradient in a Microchannel Flow |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 濃度梯度 、擴散 、流阻 、微流體 |
| 外文關鍵詞: | flow resistance, diffusion, microfluidic, concentration gradient |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微全分析系統蓬勃發展,利用微機電製程製作之生醫晶片具有檢測樣本少、廢棄物少、低成本及可攜帶之優點,且目前已有細胞研究、細胞分離、藥物檢測等多方面應用。
利用兩道匯流流體在微管道中層流流場特性,造成一非線性濃度分布曲線。在神經細胞反應中,藥劑濃度梯度之控制為主要參數,而一般線性化濃度分布之目標則常使用管道形狀與幾何配置進行濃度分布探討,此類型管道設計通常較難製作且流阻較高。
本研究利用擴張管道放大濃度分布區間,可生成穩定且連續分布的濃度場,然利用支管於擴張區後端收集流體,可得特定且非連續之濃度分布。透過數值軟體進行濃度分布之模擬,並利用數值模擬結果與流阻理論輔助管道設計,使支管濃度分布呈線性化之結果。
本研究藉由擴張式擴散晶片之實驗與模擬,探討停留時間、擴張區幾何外型、收集區阻力比例對濃度場造成之影響,使我們對擴張式擴散晶片之流場特性與機制有進一步了解,可作為濃度分布管道設計研究之依據。
Recently, micro total analysis systems (μ-TAS) are beginning to appear in a wide range of applications. The chips fabricated by photolithography techniques bring the advantage of small volumes of fluids, reagents, and
waste. The miniaturized chips are also inexpensive and portable. The microfluidic system has be utilized in cell-base assays, cells separation, pharmacological activity, and etc..
Using two streams in a laminar flow field, we can get a nonlinear concentration distribution. The manipulation of concentration gradient is important in cell response, like neurocyte or cancer cells. Usually, linear concentration gradient profile can be manipulated by the complex microchannel geometry or spatial configuration. Such designs have high flow resistance and they are hard to fabricate.
In this study, we have found stable, extended and continuous concentration distribution in the expansion part of microchannels. We employ eight outlet channels to obtain the specific and fragmented concentration profiles. We have conducted experiments and used both the simulation and flow resistance theory to aid channel design and obtain linear concentration profile.
The study investigated the effect of residence time, the geometry of the expansion channel, and the resistance ratio of the exit channels on the concentration distribution. By exploring the parameters above, we have
gained better understanding of the characteristic of the present diffusion-based flow-field.
1.A. Radbruch, “Flow cytometry and cell sorting”, Springer-Verlag, New York, 7-11 (1992).
2.P.T. Sharpe, “Methods of cell separation”, Elsevier, New York, 23-26 (1988).
3.M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator”, Electrophoresis, 22, 3883-3892 (2001).
4.K. Asami, E. Gheorghiu, T. Yonezawa, “Dielectric behavior of budding yeast in cell separation”, Biochimica et Biophysica Acta, 1381, 234-240 (1998).
5.P.R.C. Gascoyne, X.B. Wang, Y. Huang, F.F. Becker, “Dielectrophoretic separation of cancer cells from blood”, IEEE Transactions on Industry Applications, 33, 670-678 (1997).
6.C.S. Effenhauser, A. Manz, H.M. Widmer, “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights”, Analytical Chemistry, 65, 2637-2642 (1993).
7.A.T. Woolley, K.Q. Lao, A.N. Glazer, R.A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection”, Analytical Chemistry, 70, 684-688 (1998).
8.J.P. Brody, P. Yager, “Diffusion-based extraction in a microfabricated device”, Sensors and Actuators A, 58, 13-18 (1997).
9.S. Levin, J.C. Giddings, “Continuous separation of particles from macromolecules in split-flow thin (SPLITT) Cells”, Journal of Chemical Technology and Biotechnology, 50, 43-56 (1991).
10.J.C. Giddings, “Field-flow fractionation : separation and characterization of macromolecular-colloidal-particulate materials”, Science, 260, 1456-1465 (1993).
11.D.B. Weibel, G.M. Whitesides, “Application of microfluidics in chemical biology”, Current Opinion in Chemical Biology , 10, 584-591 (2006).
12.B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon,“Human neural stem cell growth and differentiation in a gradient-generating microfluidic device”, Lab on a Chip, 5, 401-406 (2005).
13.N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L.V.D. Water, M. Toner, “Neutrophil chemotaxis in linear and complex gradient of interleukin-8 formed in a microfabricated device”, Nature Biotechnology, 20, 826-830 (2002).
14.X.Y. Jiang, Q.B. Xu, S.K.W. Dertinger, A.D. Stroock, T.M. Fu, G.M. Whitesides, “A general method for patterning gradients of biomolecules on surfaces using microfluidic networks”, Analytical Chemistry, 77, 2338-2347 (2005).
15.D. Irimia, D.A. Geba, M.Toner, “Universal microfluidic gradient generator”, Analytical Chemistry, 78, 3472-3477 (2006).
16.H.K. Wu, B. Huang, R.N. Zare, “Generation of complex, static solution gradients in microfluidic channels”, Journal of the American Chemical Society, 128, 4194-4195 (2006).
17.S.I. Fujii, M. Uematsu, S. Yabuki, M. Abo, E. Yoshimura, K. Sato, “Microbioassay system for an anti-cancer agent test using animal cells on a microfluidic gradient mixer”, Analytical Sciences, 22, 87-90 (2006).
18.H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219 (1977).
19.S.T. Wereley, I. Whitacre, R. Bashir, H.B. Li, “DEP particle dynamics and the steady drag assumption”, 2004 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2004, 1, 320-323 (2004).
20.X.F. Peng, G.P. Peterson, B.X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannels”, Experimental Heat Transfer, 7, 249-264 (1994).
21.M. Gad-el-Hak, “The fluid mechanics of microdevices-The freeman scholar lecture”, Journal of Fluids Engineering, 121, 5-34 (1999).
22.P. Wu, W.A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277 (1983).
23.Reist、鄭福田、劉希平, “微粒導論”, 國立編譯館, 2001年.
24.F.M. White, “Viscous fluid flow”, McGraw-Hill, New York (2006).
25.W. Kern, D.A. Poutinen, “Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology”, Radio Corporation of America Review, 31, 187-206 (1970).
26.G.W. Rubloff, “Defect microchemistry in SiO2/Si structures”, Journal of Vacuum Science & Technology A, 8, 1857-1863 (1990).
27.D.W. Johnson, A. Jeffries, D.W. Minsek, R.J. Hurditch, “Improving the process capability of SU-8”, Journal of Photopolymer Science and Technology, 14, 689-694 (2001).
28.N. LaBianca, J.D. Gelorme, “High aspect ratio resist for thick film application”, Proceedings of The Society of Photo-Optical Instrumentation Engineers-Proceedings of SPIE, 2438, 846-852 (1995).
29.張珮郁,“微流元件內表面張力驅動之流體流動現象的實驗探討”, 成功大學, 2003年.