簡易檢索 / 詳目顯示

研究生: 彭育賢
Peng, Yu-Hsien
論文名稱: 應用於深次微米CMOS之超薄閘極絕緣層耐受超高電壓脈衝衝擊的研究
A Study of Very Thin Gate Oxide (≦1.45nm) Integrity after Short-Time Over-Stress for Ultra Deep Sub-micron CMOS Technology Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 114
中文關鍵詞: 薄閘極絕緣層
外文關鍵詞: thin gate oxide
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 元件通道長度之縮短與閘極絕緣層厚度之降低,可有效提高元件積集密度,進而控制及降低半導體製程生產成本,並達到整合電路之功能性強化與效能提昇。然而,隨著閘極氧化層厚度之降低,元件可耐受之閘極電壓亦隨之降低。因此閘極氧化層可靠度驗證變成非常重要。
    本論文中,吾人首先簡介了常見之可靠度驗證所利用之統計概念與工具,閘極氧化層之崩潰現象及常見於閘極氧化層可靠度驗證之 VRDB 及 SILC 量測方式。然後利用廣泛應用於靜電防護電路驗證之 TLP 技術來預先施予超薄閘極氧化層一高電壓脈衝,再透過 VRDB 之測試方法,評估超薄閘極氧化層之可靠度風險及其可耐受之最大閘極靜電電壓。此外,並找出最大脈衝電壓和閘極氧化層之崩潰電壓間關係,使 TLP 技術得以做為評估薄閘極氧化層之可靠度風險及其可耐受之最大閘極靜電電壓的一種簡便且不破壞之方法。

    As the CMOS technology scales down to ultra deep sub-micron regime, the gate dielectric becomes very thin (≦1.45nm), thus the robustness of the thin gate dielectric for core devices is much more important. It is necessary to evaluate the reliability risk to further reconfirm the gate oxide integrity.

    In this thesis, we develop a technique to evaluate the reliability of the gate oxide integrity. Firstly, a transmission line pulse (TLP) is applied on the thin gate dielectric to simulate the ESD (Electrostatic Discharge). And then, the common method VRDB (Voltage Ramp Dielectric Breakdown) is further taken for gate-oxide integrity verification. Meanwhile, the maximum tolerable pre-stress on such very thin gate dielectric is further confirmed.

    English Abstract I Chinese Abstract Ⅱ Contents Ⅳ Tables Caption Ⅶ Figures Caption Ⅷ Nomenclature ⅩⅣ Chapter 1 Introduction 1.1 Motivation 1 1.2 Preface of thesis 2 Chapter 2 Theoretical Analysis 2.1 Basic Statistics Concept correlated with Reliability 3 2.2 Gate Dielectric Breakdown 5 2.3 Voltage Ramp Dielectric Breakdown (VRDB) 6 2.4 Stress-Induced Leakage Current (SILC) 8 2.5 Transmission Line Pulse 8 Chapter 3 Experimental 3.1 Objective for Experiment 10 3.2 Test Equipments 10 3.3 Procedure of Experiments 11 3.3.1 TLP System Calibration 11 3.3.2 TLP Pulses Pre-stress 12 3.3.3 Maximum Tolerable Pre-stressed TLP Pulses Evaluation 12 3.3.4 VRDB Testing for TLP Pulses Impact Evaluation on Gate Oxide 13 Chapter 4 Results & Discussion 4.1 Voltage and Current Waveform Check for TLP System Calibration 14 4.2 Gate Oxide Leakage Check under TLP Pre-stress 14 4.3 Voltage and Current Waveform Reconfirmation for TLP Pulses 17 4.4 Gate Oxide Ig-Vg Characteristics Check for VRDB 18 4.5 Analysis on Breakdown Voltage CDF Behaviors 19 4.6 Analysis on Correlation between Breakdown Voltage and Tox 20 Chapter 5 Conclusion and Future Work 5.1 Conclusion 22 5.2 Prospects 23 References 25 Acknowledgement ⅩⅦ VITA ⅩⅧ

    [1] G. Baccarani, M. R. Wordeman, R.H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 micrometer MOSFET Design,” IEEE Transactions, Electron Devices, vol. 31, p. 452, 1984
    [2] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, A. R. LeBlanc, “Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, vol. sc-9, p. 256, 1974
    [3] T. Hori, Gate Dielectrics and MOS ULSIs, p. 105
    [4] Elyse Rosenbaum, Joseph C. King, Chenming Hu, “Accelerated Testing of SiO2 Reliability,” IEEE Transactions, Electron Devices, vol. 43, no. 1, p. 70-80, Jan. 1996
    [5] C. F. Chen, C. Y. Wu, “A Characterization Model for Ramp-Voltage-Stressed I-V Characteristics of Thin Thermal Oxides Grown on Silicon Substrate,” Solid-State Electronics, vol. 29, no. 10, p. 1059, Jan. 1986
    [6] Buller J. F., Bandyopadhyay B., Garg S., Patel N., “Improved EEPROM Tunnel- and Gate-Oxide Quality by Integration of a Low-Temperature Pre-tunnel-oxide RCA sc-1 Clean,” Semiconductor Manufacturing, IEEE Transactions, vol. 9, no. 3, p. 471 – 476, Aug. 1996
    [7] Yassine A., Wieczorek K., Olasupo K., Heinig V, “A Novel Electrical Test to Differentiate Gate-to-Source/Drain Silicide Short from Gate Oxide Short,” Integrated Reliability Workshop Final Report, 2000 IEEE International 23-26 Oct. 2000, p. 90 – 94
    [8] Yuhao Luo, Nayak D., Gitlin D., Ming-Yin Hao, Chia-Hung Kao, Chien-Hsun Wang, “Oxide Reliability of Drain Engineered I/O NMOS from Hot Carrier Injection,” IEEE, Electron Device Letters, vol. 24, no. 11, p. 686 – 688, Nov. 2003
    [9] Weger A., Voldman S., Stellari F., Peilin Song, Pia Sanda, McManus M., “Transmission Line Pulse Picosecond Imaging Circuit Analysis Methodology for Evaluation of ESD and Latchup,” Reliability Physics Symposium Proceedings, 2003. 41st Annual. 2003 IEEE International 30 March-4 April 2003, p. 99 – 104
    [10] Voldman S., Gauthier R., Reinhart D., Morrisseau K., “High-Current Transmission Line Pulse Characterization of Aluminum and Copper Interconnects for Advanced CMOS Semiconductor Technologies,” Reliability Physics Symposium Proceedings, 1998. 36th Annual. 1998 IEEE International 31 March-2 April 1998, p. 293 – 301
    [11] Juliano P. A., Rosenbaum E., “Accurate Wafer-level Measurement of ESD Protection Device Turn-on Using a Modified Very Fast Transmission-Line Pulse System,” IEEE Transactions, Device and Materials Reliability, vol. 1., no. 2, p. 95 – 103, Jun. 2001
    [12] Jui-Chu Lee, Young R., Liou J. J., Croft G. D., Bernier J. C., “An Improved Experimental Setup for Electrostatic Discharge (ESD) Measurements Based on Transmission Line Pulsing Technique,” IEEE Transactions, Instrumentation and Measurement, vol. 50, no. 6, p. 1808 – 1814, Dec. 2001
    [13] Bonfert D., Wolf H., Gieser H., Stocker A., “ESD Susceptibility of Thick Film Chip Resistors by Means of Transmission Line Pulsing,” Electronics System Integration Technology Conference, 2006. 1st, vol. 2, p.947 – 953, Sep. 2006
    [14] J. C. Lee, R. Young, J. J. Liou, G. D. Croft, J.C. Bernier, “An Improved Transmission Line Pulsing (TLP) Setup for Electrostatic Discharge (ESD) Testing in Semiconductor Devices and ICs,” Microelectronic Test Structures, 2001. ICMTS 2001. Proceedings of the 2001 International Conference on 19-22 March 2001, p. 233 - 238
    [15] Wolf H., Gieser H., Wilkening W., “Analyzing the Switching Behavior of ESD-Protection Transistors by Very Fast Transmission Line Pulsing,” Electrical Overstress / Electrostatic Discharge Symposium Proceedings, 1999 28-30, p. 28 – 37, Sep. 1999
    [16] Hugh Hyatt, Jay Harris, Andre Alonzo, Patrick Bellew, “TLP Measurement for ESD Protection Device Response,” IEEE Transactions, Electronics Packaging Manufacturing, vol. 24, no. 2, p. 90-99, Apr. 2001
    [17] J. C. Lee, I. C. Chen, C. Hu, “Modeling and Characterization of Gate Oxide Reliability,” IEEE Transactions, Electron Devices, vol. 35, no. 12, p. 2268, 1988
    [18] R. Moazzami, C. Hu, “Projecting Gate Oxide Reliability and Optimizing Reliability Screen,” IEEE Transactions, Electron Devices, vol. 37, no. 7, p. 1643, Jan. 1990
    [19] D. B. Kao, J. M. DeLarios, C. R. Helms, B. E. Deal, “A Study of the Breakdown Testing of Thermal Silicon Oxides and the Effects of Pre-oxidation Surface Treatment,” Proc. Int. Reliability Physics Symposium, p. 9, 1989
    [20] K. F. Schuegraf et al., “Hole Injection SiO2 Breakdown Model for Every Low Voltage Lifetime Extrapolation,” IEEE Transactions, Electron Devices, vol. 41, no. 5, p. 761 – 766, 1994
    [21] Wai-Kim Chim, Gim Leong THE, “Neutral Electron Trap Generation and Hole Trapping in Thin Oxides under Electrostatic Discharge Stress,” Japanese Journal of Applied Physics, vol. 37, no. 4A, p. 1671 - 1673
    [22] M. Kimura, H. Koyama, “Stress Induced Low-Level Leakage Mechanism in Ultrathin Silicon Dioxide Films Caused by Neutral Oxide Trap Generation,” in Proc. IEEE Int. Reliability Physics Symposium, p. 167, 1994
    [23] E. Rosenbaum, L.F. Register, “Mechanism of Stress-Induced Leakage Current in MOS Capacitors,” IEEE Transactions, Electron Devices, vol. 44, p. 317 – 323, 1997
    [24] K. Sakakibara, N. Ajika, M. Hatanaka, H. Miyoshi, “A Quantitative Analysis of Stress Induced Excess Current (SIEC) in SiO2 Films,” Proc. Int. Reliability Physics Symposium, p. 100, 1996
    [25] Yasuda H., Ikeda N., Ham K., Takagi M.T., Yoshii I., “Relation between Stress-Induced Leakage Current and Dielectric Breakdown in SiN-based Antifuses,” Reliability Physics Symposium, 1994. 32nd Annual Proceedings, IEEE International 11-14 April 1994, p. 225 - 231
    [26] Satoh S., Hemink G., Hatakeyama K., Aritome S., “Stress-Induced Leakage Current of Tunnel Oxide Derived from Flash Memory Read-Disturb Characteristics,” IEEE Transactions, Electron Devices, vol. 45, no. 2, p. 482 – 486, Feb. 1998
    [27] Iannaccone G., Crupi F., Neri B., Lombardo S., “Theory and Experiment of Suppressed Shot Noise in Stress-Induced Leakage Currents,” IEEE Transactions, Electron Devices, vol. 50, no. 5, p. 1363 – 1369, May 2003
    [28] L. Pantisano, K.P. Cheung, “Stress-Induced Leakage Current (SILC) and Oxide Breakdown: Are they from the Same Oxide Traps,” Device and Materials Reliability, IEEE Transactions, vol. 1, no. 2, p. 109 – 112, Jun. 2001
    [29] E. Y. Wu, J. Sune, E. Nowak, W. Lai, J. McKenna, “Weibull Slopes, Critical Defect Density, and the Validity of Stress-Induced-Leakage Current (SILC) Measurements,” Electron Devices Meeting, 2001. IEDM Technical Digest. International 2-5 Dec. 2001, p. 6.3.1 - 6.3.4
    [30] Degraeve R., Kaczer B., Schuler F., Lorenzini M., Wellekens D., Hendrickx P., Van Houdt J., Haspeslagh L., Tempel G., Groeseneken G., “Statistical Model for Stress-Induced Leakage Current and Pre-breakdown Current Jumps in Ultra-thin Oxide Layers,” Electron Devices Meeting, 2001. IEDM Technical Digest. International 2-5 Dec. 2001, p. 6.2.1 - 6.2.4
    [31] Wai-Kim Chim, “Latent Damage Investigation on Lateral Non-uniform Charge Generation and Stress-Induced Leakage Current in Silicon Dioxide Subjected to High Field Current Impulse Stress,” IEEE Transactions, Electron Devices, vol. 47, no. 2, p. 473 – 481, Feb. 2000

    下載圖示 校內:2012-07-12公開
    校外:2012-07-12公開
    QR CODE