簡易檢索 / 詳目顯示

研究生: 吳家瑜
Wu, Chia-Yu
論文名稱: 應用強健模糊邏輯控制器進行自主式水下無人載具定深與定向控制之研究
The Investigation of Robust Fuzzy Controller on Depth and Heading Performance of an Autonomous Underwater Vehicle
指導教授: 林宇銜
Lin, Yu-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 自主式水下載具模糊控制深度控制航行姿態控制
外文關鍵詞: AUV, Fuzzy Control, Depth Control, Heading Control
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨於設計與實現「潛航控管系統」(Diving Control System, DCS)於自主式水下載具(Autonomous Underwater Vehicle, AUV),基於載具深度計設計、強健型模糊控制器決策優化設計與即時載具航行姿態閉迴路控制,完成動態測試並進行實驗數據分析。深度計設計使用絕對壓力型式液壓計做為感測元件,採用進行壓力深度換算,構成本研究使用於AUV之深度感測輸入裝置。潛航控管系統控制載具之平擺(Yaw)與俯仰(Pitch)角度,由載具配置的姿態航向參考系統(Attitude and Heading Reference System, AHRS)及深度計即時獲取載具當前之運動姿態向量與入水深度值,執行載具潛航控管演算程序獲得AUV運動控制之垂直舵與水平舵角度值。本研究之潛航控管系統採用強健型模糊控制器進行模糊決策優化設計,並且在實際試驗中與一般未經優化之模糊控制器控制表現進行比較。最後,本研究完成AUV潛航控管系統整合動態測試並進行實驗數據分析發現,經採用決策優化之強健型模糊控制器在精準深度控制及穩定姿態皆優於一般未經優化之模糊控制器。
    關鍵字:自主式水下載具;模糊控制;深度控制;航行姿態控制

    The purpose of this research is to design and implement a diving control system (DCS) for an autonomous underwater vehicle (AUV), to complete dynamic testing, and to conduct an experimental data analysis on the basis of the AUV depth sensor design, robust fuzzy controller decision-making optimization design, and real-time AUV navigation posture closed-loop control. Adopting pressure depth conversion, the design of the depth sensor utilizes an absolute pressure hydraulic gauge as the sensing element. Wireless pressure gauge constitutes the depth-sensing input device that is used in the AUV in this research. DCS controls the yaw and pitch angles of AUV, and the attitude and heading reference system (AHRS) and the depth sensor configured by the AUV can obtain the AUV's real-time current motion attitude vector and underwater value. DCS’s calculation program was executed to obtain the vertical and horizontal rudder angle values of the AUV motion control. In this study, DCS applies a robust fuzzy controller for fuzzy decision-making optimization design and compares the control performance of the general fuzzy controller in an experiment. Finally, this research completes the integration dynamic test of the DCS and conducts an experimental data analysis. The results of the study show that the robust fuzzy controller optimized precise depth control and stable attitude by decision-making is better than the general fuzzy controller without optimization.
    Keywords: AUV, Fuzzy Control, Depth Control, Heading Control

    摘要 I 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 符號說明 XIX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究方法 4 1-4 本文架構 6 第二章 自主式水下載具外型與系統架構 8 2-1 自主式水下載具之外型 8 2-2 自主式水下載具之系統架構 9 2-2-1 導航模組 10 2-2-2藍芽串列資訊傳遞模組 10 2-2-3 液壓計 11 第三章 潛航控管系統(DCS) 12 3-1 垂直平面控制 12 3-1-1深度計設計 12 3-2 水平平面控制 14 3-2-1姿態航向參考系統 14 第四章 模糊控制 18 4-1 模糊控制與理論概論 18 4-2 模糊控制器 18 第五章 潛航控管系統設計 23 5-1垂直平面設計 23 5-1-1模糊控制 23 5-1-2強健型模糊控制器 25 5-1-3決策討論 26 5-2 水平平面設計 27 5-3 潛航控管系統流程架構 29 5-4 控制介面 30 第六章 實驗架構 32 6-1實驗流程 32 6-2實驗設計 33 6-2-1性能測試 33 6-2-2潛航控管系統實驗 35 第七章 實驗結果與分析 38 7-1垂直與水平平面控制 39 7-1-1空間中垂直平面控制 39 7-1-2空間中水平平面控制 51 7-2數據分析 55 第八章 結論 68 參考文獻 70

    參考文獻
    [1] M. Yang, Z. Sheng, Y. Che, J. Hu, K. Hu, and Y. Du, "Design of Small Monitoring ROV for Aquaculture," in 2019 OCEANS - Marseille, OCEANS Marseille 2019, June 17, 2019 - June 20, 2019, Marseille, France, 2019, vol. 2019-June: Institute of Electrical and Electronics Engineers Inc., in OCEANS 2019 - Marseille, OCEANS Marseille 2019, doi: 10.1109/OCEANSE.2019.8867487. [Online]. Available: http://dx.doi.org/10.1109/OCEANSE.2019.8867487
    [2] M. J. Doble, A. L. Forrest, P. Wadhams, and B. E. Laval, "Through-ice AUV deployment: Operational and technical experience from two seasons of Arctic fieldwork," Cold Regions Science and Technology, vol. 56, no. 2-3, pp. 90-97, 2009, doi: 10.1016/j.coldregions.2008.11.006.
    [3] H. Singh et al., "Imaging coral I: imaging coral habitats with the SeaBED AUV," Subsurface Sensing Technologies and Applications, vol. 5, no. 1, pp. 25-42, 2004.
    [4] H. Singh, R. Eustice, C. Roman, and O. Pizarro, "The SeaBED AUV-a platform for high resolution imaging," Unmanned Underwater Vehicle Showcase, 2002.
    [5] R. Bono, M. Caccia, and G. Veruggio, "Software architecture and pool tests of a small virtual AUV," IFAC Proceedings Volumes, vol. 27, no. 14, pp. 1031-1036, 1994/09/01/ 1994, doi: https://doi.org/10.1016/S1474-6670(17)47433-7.
    [6] E. Y. Hong, H. G. Soon, and M. Chitre, "Depth control of an autonomous underwater vehicle, STARFISH," in OCEANS'10 IEEE Sydney, OCEANSSYD 2010, 2010: IEEE Computer Society, in OCEANS'10 IEEE Sydney, OCEANSSYD 2010, doi: 10.1109/OCEANSSYD.2010.5603566. [Online]. Available: http://dx.doi.org/10.1109/OCEANSSYD.2010.5603566
    [7] H. Singh, D. Yoerger, and A. Bradley, "Issues in AUV design and deployment for oceanographic research," in Proceedings of the 1997 IEEE International Conference on Robotics and Automation, ICRA. Part 3 (of 4), April 20, 1997 - April 25, 1997, Albuquerque, NM, USA, 1997, vol. 3: IEEE, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 1857-1862.
    [8] J. J. Leonard and A. Bahr, "Autonomous underwater vehicle navigation," in Springer Handbook of Ocean Engineering: Springer, 2016, pp. 341-358.
    [9] B. K. Sahu and B. Subudhi, "Adaptive Tracking Control of an Autonomous Underwater Vehicle," International Journal of Automation and Computing, vol. 11, no. 3, pp. 299-307, 2014, doi: 10.1007/s11633-014-0792-7.
    [10] M. H. Khodayari and S. Balochian, "Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller," Journal of Marine Science and Technology, vol. 20, no. 3, pp. 559-578, 2015.
    [11] S. Miyamaoto et al., "Maneuvering control system design for autonomous underwater vehicle," in MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), 2001, vol. 1: IEEE, pp. 482-489.
    [12] N. Q. Hoang and E. Kreuzer, "Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: Theory and experiments," Control engineering practice, vol. 15, no. 4, pp. 411-419, 2007.
    [13] J. S. Wang and C. S. G. Lee, "Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle," (in English), IEEE Trans. Robot. Autom., Article vol. 19, no. 2, pp. 283-295, Apr 2003, doi: 10.1109/tra.2003.808865.
    [14] Y. Wang, Y. Shen, K. Wang, Q. Sha, B. He, and T. Yan, "Fuzzy controller used smoothing function for depth control of autonomous underwater vehicle," in OCEANS 2016 - Shanghai, April 10, 2016 - April 13, 2016, Shanghai, China, 2016: Institute of Electrical and Electronics Engineers Inc., in OCEANS 2016 - Shanghai, doi: 10.1109/OCEANSAP.2016.7485589. [Online]. Available: http://dx.doi.org/10.1109/OCEANSAP.2016.7485589
    [15] P. Gupta and R. Gupta, "Depth control technique for an autonomous underwater vehicle system," in 2016 International Conference on Communication and Signal Processing, ICCSP 2016, April 4, 2016 - April 6, 2016, Melmaruvathur, Tamilnadu, India, 2016: Institute of Electrical and Electronics Engineers Inc., in International Conference on Communication and Signal Processing, ICCSP 2016, pp. 19-22, doi: 10.1109/ICCSP.2016.7754217. [Online]. Available: http://dx.doi.org/10.1109/ICCSP.2016.7754217
    [16] S. M. Zanoli and G. Conte, "Remotely operated vehicle depth control," Control engineering practice, vol. 11, no. 4, pp. 453-459, 2003.
    [17] M. S. Hitam, E. A. Awalludin, W. N. Jawahir Hj Wan Yussof, and Z. Bachok, "Mixture contrast limited adaptive histogram equalization for underwater image enhancement," in 2013 International Conference on Computer Applications Technology, ICCAT 2013, January 20, 2013 - January 22, 2013, Sousse, Tunisia, 2013: IEEE Computer Society, in International Conference on Computer Applications Technology, ICCAT 2013, pp. Dar Al-Uloom University; Future Technologies and Innovation; N and N Global Technologies, doi: 10.1109/ICCAT.2013.6522017. [Online]. Available: http://dx.doi.org/10.1109/ICCAT.2013.6522017
    [18] L. A. Zadeh, "FUZZY SETS," (in English), Information and Control, Article vol. 8, no. 3, pp. 338-&, 1965, doi: 10.1016/s0019-9958(65)90241-x.
    [19] P. M. Larsen, "Industrial applications of fuzzy logic control," International Journal of Man-Machine Studies, vol. 12, no. 1, pp. 3-10, 1980.
    [20] E. H. Mamdani, "APPLICATION OF FUZZY LOGIC TO APPROXIMATE REASONING USING LINGUISTIC-SYNTHESIS," (in English), IEEE Trans. Comput., Article vol. 26, no. 12, pp. 1182-1191, 1977. [Online]. Available: <Go to ISI>://WOS:A1977EF28400002.
    [21] Y. Tsukamoto, "An approach to fuzzy reasoning method," 1979.
    [22] R. R. Yager and D. P. Filev, "Essentials of fuzzy modeling and control," New York, vol. 388, pp. 22-23, 1994.
    [23] D. Driankov, H. Hellendoorn, and M. Reinfrank, An introduction to fuzzy control. Springer Science & Business Media, 2013.
    [24] D. Qi, J. Feng, and J. Yang, "Longitudinal Motion Control of AUV Based on Fuzzy Sliding Mode Method," Journal of Control Science and Engineering, vol. 2016, p. 7428361, 2016/02/17 2016, doi: 10.1155/2016/7428361.
    [25] D. Loebis, R. Sutton, J. Chudley, and W. Naeem, "Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system," Control engineering practice, vol. 12, no. 12, pp. 1531-1539, 2004.
    [26] S. W. Jun, D. W. Kim, and H. J. Lee, "Design of T-S fuzzy-model-based controller for depth control of autonomous underwater vehicles with parametric uncertainties," in 2011 11th International Conference on Control, Automation and Systems, ICCAS 2011, October 26, 2011 - October 29, 2011, Gyeonggi-do, Korea, Republic of, 2011: IEEE Computer Society, in International Conference on Control, Automation and Systems, pp. 1682-1684.
    [27] H. J. Lee, J. B. Park, and G. Chen, "Robust fuzzy control of nonlinear systems with parametric uncertainties," IEEE Transactions on fuzzy systems, vol. 9, no. 2, pp. 369-379, 2001.
    [28] J. Ackermann and T. Buente, "Actuator rate limits in robust car steering control," in Proceedings of the 1997 36th IEEE Conference on Decision and Control. Part 1 (of 5), December 10, 1997 - December 12, 1997, San Diego, CA, USA, 1997, vol. 5: IEEE, in Proceedings of the IEEE Conference on Decision and Control, pp. 4726-4730.
    [29] J.-W. Perng, H.-I. Chin, B.-F. Wu, and T.-T. Lee, "Stability analysis of a robust fuzzy vehicle steering control system," in IEEE Proceedings. Intelligent Vehicles Symposium, 2005., 2005: IEEE, pp. 382-387.
    [30] H. X. Li, L. Zhang, K. Y. Cai, and G. R. Chen, "An improved robust fuzzy-PID controller with optimal fuzzy reasoning," (in English), IEEE Trans. Syst. Man Cybern. Part B-Cybern., Article vol. 35, no. 6, pp. 1283-1294, Dec 2005, doi: 10.1109/tsmcb.2005.851538.
    [31] S. M. Smith, G. J. S. Rae, and D. T. Anderson, "Applications of fuzzy logic to the control of an autonomous underwater vehicle," in Second IEEE International Conference on Fuzzy Systems, March 28, 1993 - April 1, 1993, San Francisco, CA, USA, 1993: Publ by IEEE, in 1993 IEEE International Conference on Fuzzy Systems, pp. 1099-1106.
    [32] A. Nag, S. S. Patel, and S. Akbar, "Fuzzy logic based depth control of an autonomous underwater vehicle," in 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013: IEEE, pp. 117-123.
    [33] P. A. Debitetto, "FUZZY-LOGIC FOR DEPTH CONTROL OF UNMANNED UNDERSEA VEHICLES," (in English), IEEE J. Ocean. Eng., Note vol. 20, no. 3, pp. 242-248, Jul 1995, doi: 10.1109/48.393079.
    [34] Z. Yan, B. Hao, and Y. Liu, "Depth control of AUV based on T-S fuzzy-model," ICIC Express Letters, vol. 8, no. 11, pp. 3021-3027, 2014.
    [35] A. Nag, S. S. Patel, and S. A. Akbar, "Fuzzy logic based depth control of an autonomous underwater vehicle," in 2013 IEEE International Multi Conference on Automation, Computing, Control, Communication and Compressed Sensing, iMac4s 2013, February 22, 2013 - February 23, 2013, Kerala, India, 2013: IEEE Computer Society, in Proceedings - 2013 IEEE International Multi Conference on Automation, Computing, Control, Communication and Compressed Sensing, iMac4s 2013, pp. 117-123, doi: 10.1109/iMac4s.2013.6526393. [Online]. Available: http://dx.doi.org/10.1109/iMac4s.2013.6526393
    [36] D. Brutzman, T. Healey, D. Marco, and B. McGhee, "The Phoenix autonomous underwater vehicle," Artificial Intelligence and Mobile Robots: Case studies of successful robot systems, pp. 323-360, 1998.
    [37] X. Li and Z. Li, "Vector-Aided In-Field Calibration Method for Low-End MEMS Gyros in Attitude and Heading Reference Systems," IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2675-2681, 2014, doi: 10.1109/TIM.2014.2313434.
    [38] G. Sun, Y. Li, J. S. Xie, M. Garratt, and C. Wang, "Implementing quaternion based AHRS on a MEMS multisensor hardware platform," in International Global Navigation Satellite Systems Society IGNSS Symposium 2013, 2013.
    [39] D. Gebre-Egziabher, G. H. Elkaim, J. David Powell, and B. W. Parkinson, "Calibration of strapdown magnetometers in magnetic field domain," Journal of Aerospace Engineering, vol. 19, no. 2, pp. 87-102, 2006.
    [40] X. Li and Z. Li, "A new calibration method for tri-axial field sensors in strap-down navigation systems," Measurement Science and Technology, vol. 23, no. 10, p. 105105, 2012/09/03 2012, doi: 10.1088/0957-0233/23/10/105105.
    [41] V. Kanakakis, K. P. Valavanis, and N. C. Tsourveloudis, "Fuzzy-logic based navigation of underwater vehicles," (in English), J. Intell. Robot. Syst., Article vol. 40, no. 1, pp. 45-88, May 2004, doi: 10.1023/b:Jint.0000034340.87020.05.
    [42] L. V. Steenson, A. B. Phillips, S. R. Turnock, M. E. Furlong, and E. Rogers, "Effect of measurement noise on the performance of a depth and pitch controller using the model predictive control method," in 2012 IEEE/OES Autonomous Underwater Vehicles, AUV 2012, September 24, 2012 - September 27, 2012, Southampton, United kingdom, 2012: IEEE Computer Society, in 2012 IEEE/OES Autonomous Underwater Vehicles, AUV 2012, doi: 10.1109/AUV.2012.6380732. [Online]. Available: http://dx.doi.org/10.1109/AUV.2012.6380732
    [43] D. F. Myring, "A Theoretical Study of Body Drag in Subcritical Axisymmetric Flow," Aeronautical Quarterly, vol. 27, no. 3, pp. 186-194, 1976, doi: 10.1017/S000192590000768X.
    [44] Y. Chardard and T. Copros, "Swimmer: final sea demonstration of this innovative hybrid AUV/ROV system," in Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No.02EX556), 19-19 April 2002 2002, pp. 17-23, doi: 10.1109/UT.2002.1002371.
    [45] S. Macht, M. Escher, M. Bobbe, B. Kohn, and U. Bestmann, "Tightly coupled navigation system of a differential magnetometer system and a MEMS-IMU for Enceladus," in 2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018, April 23, 2018 - April 26, 2018, Monterey, CA, United states, 2018: Institute of Electrical and Electronics Engineers Inc., in 2018 IEEE/ION Position, Location and Navigation Symposium, PLANS 2018 - Proceedings, pp. 1088-1096, doi: 10.1109/PLANS.2018.8373491. [Online]. Available: http://dx.doi.org/10.1109/PLANS.2018.8373491
    [46] M. Mirzaei, I. Hosseini, and R. Babaei, "MEMS Magnetometer Calibration Using Modified Ellipsoid Fitting Method," 2017.
    [47] H. Milanchian, J. Keighobadi, and H. Nourmohammadi, "Magnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems," (in en), AUT Journal of Modeling and Simulation, vol. 47, no. 1, pp. 55-65, 2015, doi: 10.22060/miscj.2015.547.
    [48] N. E. Adilova, "Consistency of Fuzzy If-Then Rules for Control System," Cham, 2020: Springer International Publishing, in 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019, pp. 137-142.
    [49] K. Teo, E. An, and P. J. Beaujean, "A Robust Fuzzy Autonomous Underwater Vehicle (AUV) Docking Approach for Unknown Current Disturbances," IEEE J. Ocean. Eng., vol. 37, no. 2, pp. 143-155, 2012, doi: 10.1109/JOE.2011.2180058.
    [50] A. Al-Mahturi, F. Santoso, M. A. Garratt, and S. G. Anavatti, "A Robust Adaptive Interval Type-2 Fuzzy Control for Autonomous Underwater Vehicles," in 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), 1-3 July 2019 2019, pp. 19-24, doi: 10.1109/ICIAICT.2019.8784855.
    [51] A. Wadood, S. G. Anavatti, and O. Hassanein, Robust controller design for an autonomous underwater vehicle. 2017, pp. 237-244.

    無法下載圖示 校內:2026-08-28公開
    校外:2026-08-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE