簡易檢索 / 詳目顯示

研究生: 蔣志偉
Chiang, Chih-Wei
論文名稱: 兩階段隨機規劃法於電力系統規劃之應用研究
Study of Power System Planning by Two-stage Stochastic Programming
指導教授: 吳榮華
Wu, Rong-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 兩階段隨機規劃法電力系統規劃
外文關鍵詞: Two-stage stochastic programming methodology, Electricity supply planning
相關次數: 點閱:164下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電廠投資為耗時、金額大之工程,且除建造電廠外,亦須興建大量電
    網、變電所,決策者若在期初設置的機組太多、擴展規模過快,而未來電力需求卻不如預期時,電廠成本勢必上升,由此可見需求變化對電力系統規劃之影響性。以往電力系統規劃模型,將未來電力負載需求視為給定值,但在現今多變的社會中,顯然無法滿足此假設。基此,本研究旨在建構考量電力負載需求不確定性下之電力系統規劃模型。
    兩階段隨機規劃法(Two-Stage Stochastic Programming)適合用來處理不確定性問題,因此本研究以此方法將模型分為兩個階段,以考量在第二階段之需求不確定性發生時,在第一階段之發電機組做最有效率的配置。然此法雖可將不確定性納入模型中,但亦造成模型過於龐大無法計算,故本研究利用決策樹模擬方式,將未來可能發生之電力負載需求簡化為各個節點,並以蒙地卡羅法模擬各節點值與計算其路徑機率。
    模擬結果顯示,兩階段隨機電力規劃模型可將電力負載需求之不確定
    性納入考量,故電力規劃者可參考此方法,以確保未來電力系統規劃之穩健性。而在模型演算過程發現,在隨機參數具有常態分配之性質下,利用蒙地卡羅法模擬未來電力負載需求並計算其路徑機率值,會比直接給予路徑機率值來得更為客觀並符合學理依據。
    本研究在「核能機組情境」中模擬結果顯示,至2025年完全無核能
    發電之目標下,燃煤機組占比顯著增加,將由2010年36.85%上升至2025年50.4%。而在「二氧化碳減量情境」下,燃煤機組占比則顯著減少,轉由燃料成本較高之燃氣機組取代,且再生能源機組占比大幅上升(風力機組將達到發展上限3,000 MW),但亦大量增加總期望成本現值。

    Power plant investments are generally irreversible, lumpy, capital intensive, long lived, and have significant lead times. Investments are also necessarily undertaken in the context of projections of future electricity demand. However, future electricity demand is subjected to a range of uncertainties, particularly the economic growth and patterns of development. Overestimating long-term electricity demand can lead to overinvestment in generation assets and significantly higher industry costs. On the other hand, underestimating electricity demand can lead to insufficient investment in generation capacity, resulting in unserved demand and potentially significant adverse impacts on economic progress. Traditional electricity supply planning model regards the electricity demand as deterministic parameter (i.e. the electricity demand is given exogenously) to select power generation technologies. But in today’s world, the energy planners are facing tremendously complex environments full of uncertainty and risks, and electricity industry is also in an uncertain situation, where the assumption of certain electricity demand is apparently unreasonable. Therefore, the research aims to establish an electricity supply planning model incorporating electricity demand uncertainty.
    The two-stage stochastic programming methodology is applied in the research to deal with the uncertainty in electricity demand. The model also combines decision tree and Monte Carlo methodology to reduce possible nodes and determine the future electricity demand values and probabilities. Using the model, we implement some simulation scenarios to evaluate the impact on the portfolio of power generation technologies and generating cost.
    The simulation results obtained by applying the model to Taiwan's electricity sector indicate that the two-stage stochastic programming methodology can explicitly address the electricity demand uncertainty. Monte Carlo methodology can characterize uncertainty by assigning a normal distribution to uncertain electricity demand, which can be estimated from historical data. Consequently, the probabilities of future electricity demand can be determined endogenously instead of given exogenously.
    In the nuclear-free scenario, the simulation shows that the share of coal-fired power plants will grow from 36.85% in 2010 to 50.4% in 2025 as all nuclear power plants decommission in 2025. In the reduction of carbon dioxide emissions scenario, the proportion of coal-fired power plants reduces and is replaced by LNG-fired and renewable energy power plants. Hence, this contributes significantly to the increase in total generating cost.

    中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究內容與架構 4 第四節 研究範圍與限制 7 第二章 文獻回顧 8 第一節 國內部分 8 第二節 國外部分 9 第三章 台灣電力部門概況 13 第一節 台灣能源供需概況 13 第二節 電力部門供需概況 15 第四章 研究方法與模型建構 23 第一節 研究方法 23 第二節 模型建構 28 第五章 參數設定與資料處理 35 第一節 參數設定 35 第二節 資料處理 40 第六章 實證結果與分析 49 第一節 基本情境分析 49 第二節 核能與二氧化碳情境設計 57 第三節 核能與二氧化碳情境結果分析 59 第七章 結論與建議 65 第一節 結論 65 第二節 建議 67 參考文獻 69 附錄(A) 台電長期電源開發9910案機組除役裝置容量(2011~2025年) 74 附錄(B) 台電長期電源開發9910案預估機組裝置容量(2011~2025年) 75 附錄(C) 核能與二氧化碳情境下之機組裝置容量占比 76

    1. 台電電力調度處(2011),民國97~100年系統負載歷時曲線。
    2. 台灣電力公司(1997),台灣電力公司86年統計年報。
    3. 台灣電力公司(2010-a),台灣電力公司99年年報。
    4. 台灣電力公司(2010-b),未來電力供需分析與規劃研究。
    5. 台灣電力公司(2010-c),實習「電力部門減碳經濟模型」,出國報告。
    6. 台灣電力公司(2012),100年各類燃料排放情形,環境保護處溫室氣體組。
    7. 台灣電力公司(2012),燃料成本變動對台電公司之影響評估及因應對策研擬,台電綜合研究所。
    8. 行政院主計處(2012),中華民國統計資訊網,6月5日取自http://ebas1.ebas.gov.tw/pxweb/Dialog/statfile9L.asp。
    9. 李正明(2010),“台灣天然氣安全存量議題的迷思(下)”,瓦斯季刊,第90期,2-13頁。
    10. 林志傳(2008),“台灣電力部門發展低碳能源與再生能源技術策略之經濟與環境效益評估”,碩士論文,國立台北大學自然資源與環境管理研究所。
    11. 張四立(2009),“電力結構調整對台灣因應溫室氣體減量效果評估”,碳經濟,第 13 期,頁 34-51。
    12. 許志義、陳澤義(2003),電力經濟學理論與應用(第五版),華泰書局。
    13. 許哲強(2002),“台灣區域電力負載預測分析系統之建立與應用研究”,博士論文,國立成功大學資源工程研究所。
    14. 黃韻勳(2007),“考量發電風險之電力供給規劃研究—再生能源範例分析”,博士論文,國立成功大學資源工程研究所。
    15. 經濟部(2011), 101年再生能源電能躉購費率審定會第3次會議。
    16. 經濟部能源局(2011-a),民國99年台灣能源統計手冊。
    17. 經濟部能源局(2011-b),我國燃料燃燒CO2排放統計與分析。
    18. 經濟部能源局(2011-c),新能源政策。
    19. 劉斯瑋(2004)“結構型金融商品評價與分析─以信用連動債券及股權連結式目標贖回債券為例”,碩士論文,國立政治大學金融研究所。
    20. 潘柔雅(2009),“台灣電力部門因應CO2減量之新增機組決策模型
    研究-多目標規劃之應用”,碩士論文,國立台北大學自然資源與環境
    管理研究所。
    21. 賴正文(1997),“區域性負載預測及電力供給規劃模型建立之研究”,博士論文,國立成功大學資源工程研究所。
    22. Ahmed, S., King, A. J. & Parija, G. (2003),“A multi-stage stochastic integer programming approach for capacity expansion under uncertainty”, Journal of Global Optimization, 26(1), 3-24.
    23. Akbari, T., Rahimikian, A. & Kazemi, A. (2011),“A multi-stage stochastic transmission expansion planning method”, Energy Conversion and Management, 52(8-9), 2844-2853.
    24. Albornoz, V. M., Benario, P. & Rojas, M. E. (2004),“A two‐stage stochastic integer programming model for a thermal power system expansion”, International Transactions in Operational Research, 11(3), 243-257.
    25. Barbarosoglu,G. & Arda, Y. (2004),“A two-stage stochastic programming framework for transportation planning in disaster response”, Journal of the Operational Research Society, 55(1), 43-53.
    26. Beraldi, P., Conforti, D. & Violi, A. (2008),“ A two-stage stochastic programming model for electric energy producers”, Computers & Operations Research, 35(10), 3360-3370.
    27. Birge, J. R. & Louveaux, F. (1997), Introduction to stochastic programming , Springer Verlag.
    28. Brooke, A., Kendrick, D. & Meeraus, A. (2010), GAMS: A users guide, release 23.3, South San Francisco: The Scientific Press.
    29. Chen, Z. L., Li, S. & Tirupati, D. (2002),“ A scenario-based stochastic programming approach for technology and capacity planning ”,
    Computers & Operations Research, 29(7), 781-806.
    30. Dantzig, G. B. (1963), Linear programming and extensions, Princeton University, Princeton : NJ.
    31. Gassmann, H. I. & Ireland, A. (1996),“On the formulation of stochastic linear programs using algebraic modelling languages”, Annals of Operations Research, 64(1), 83-112.
    32. Infanger, G. (1994), Planning under uncertainty: solving large-scale stochastic linear programs , Boyd & Fraser San Francisco, CA.
    33. IPCC/IEA(1996), Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.
    34. IEA(2010), Projected Costs of Generating Electricity, International Energy Agency (IEA).
    35. Kall, P. & Mayer, J. (2010), Stochastic linear programming: models,theory, and computation (Vol. 156): Springer Verlag.
    36. Kall, P. & Wallace, S. W. (1994), Stochastic programming , John Wiley and Sons Ltd.
    37. Kalvelagen, E. (2003), Two Stage Stochastic Linear Programming with GAMS, GAMS Corporation.
    38. Kaplan, S. (2008), Power plants: Characteristics and costs , Congressional Research Service.
    39. Y.F. Li, G.H. Huang, Y.P. Li , Y. Xu & W.T. Chen (2010),“Regional-scale electric power system planning under uncertainty—A multistage interval-stochastic integer linear programming approach”, Energy Policy, 38(1), 475-490.
    40. Q.G. Lin, G.H. Huang, B. Bass. & X.S. Qin(2009),“IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty”, Energy Policy, 37(3), 868-878.
    41. Malcolm, S. A. & Zenios, S. A. (1994),“Robust optimization for power systems capacity expansion under uncertainty”, Journal of the Operational Research Society, 45(9) ,1040-1049.
    42. McCarl, B. A. (1994), So Your GAMS Model Didn’t Work Right: A Guide to Model Repair, Texas A&M University, College Station, TX.
    43. Meteopolis, N.& Ulam, S. (1949), The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
    44. Mirkhani, S. & Saboohi, Y. (2012),“Stochastic modeling of the energy supply system with uncertain fuel price–A case of emerging technologies for distributed power generation”, Applied Energy , Vol 93, 668–674.
    45. Sakurai, M. & Ueno, S. (2006), “Preliminary analysis of transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis”, International journal of hydrogen energy, 31(15), 2378-2385.
    46. Sen, S., Yu, L. & Genc, T. (2006),“ A stochastic programming approach to power portfolio optimization”, Operations Research, Vol. 54, No. 1, 55-72.
    47. Shapiro, A., Dentcheva, D. & Ruszczyński, A. P. (2009), Lectures on stochastic programming: modeling and theory (Vol. 9), Society for Industrial Mathematics.
    48. Takayuki ,S. (2011),“Stochastic Programming Model for Power Generation”,World Academy of Science, Engineering and Technology,issue 54, 934-939.
    49. Villumsen, J. C., Brønmo, G. & Philpott, A. B. (2011),“Line Capacity Expansion and Transmission Switching in Power Systems with Large-Scale Wind Power”, Electric Power Optimization Centre.
    50. Wagner, J. M. & Berman, O. (1995),“Models for planning capacity
    expansion of convenience stores under uncertain demand and the value of information”, Annals of Operations Research, 59(1), 19-44.
    51. Weisser, D. (2007),“A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies”, Energy, 32(9), 1543-1559.

    下載圖示 校內:2018-01-31公開
    校外:2018-01-31公開
    QR CODE