| 研究生: |
王啓豪 Wang, Chi-Hao |
|---|---|
| 論文名稱: |
結合棲地適宜性與入侵壓力以評估條紋小鲃的棲地偏好 Integrating Habitat Suitability and Invasion Pressure to Assess Habitat Preferences of the Puntius semifasciolatus |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 棲地適宜性指數 、屏東五溝水濕地 、條紋小鲃 、淡水生態系 |
| 外文關鍵詞: | Habitat suitability index, Wugoushui Wetland, Puntius semifasciolatus, freshwater ecosystem |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建構一套整合環境因子、競爭壓力與物種偏好的多層次棲地適宜性評估架構,應用於分析屏東五溝水濕地原生魚類——條紋小鲃(Puntius semifasciolatus)的空間分布與適宜性。研究首先透過電格採樣與環境因子量測資料建立條紋小鲃的棲地適宜性指數(HSI),再導入外來種壓力、生態棲地利用重疊與環境適應性等概念,依序建構不同的模型架構,以模擬不同假設下的棲地條件與競爭影響。在模型評估方面,研究採用 AUC 曲線結合多條件限制分析環境因子組合分辨能力、Kruskal-Wallis 與 Dunn’s 檢定分析施工前後的顯著差異,並透過時間序列評估施工事件對評分趨勢之影響。應用線性混合效應模型(LMM)進行隔年條紋小鲃豐度變異預測,透過邊際決定係數與條件決定係數評估各模型對目標物種動態的解釋能力。最後,進行不同年度比較,進一步檢視各模型在不同採樣地點的穩定性與偏差情形。
結果顯示,模型 A 作為基礎壓力架構,操作簡便且具穩定性,能有效反映整體生物量對條紋小鲃之壓力,但對於細緻的競爭關係反應較為保守。模型 B 強調橘尾窄口鲃(Systomus rubripinnis)造成的入侵壓力,於受到外來種影響較嚴重的的區域表現較佳,顯示其在外來種入侵壓力評估上的應用潛力。模型 C 強調棲地利用重疊物種之壓力,能更精確捕捉與條紋小鲃生態棲地利用類似物種之競爭影響。模型 D 則進一步結合競爭物種之適應程度,提供更細緻之環境互動解釋。綜上所述,本研究不僅驗證了將競爭壓力與物種適應性納入 HSI 模型架構的可行性,也提出具操作性與泛用潛力的棲地評估工具架構,可應用於原生魚類保育、外來種管理與水利工程影響預測等領域。
This study develops a multi-level habitat suitability framework that integrates environmental factors, competition pressure, and species preference to evaluate the habitat use and spatial distribution of the native fish Puntius semifasciolatus in the Wugoushui Wetland, Pingtung, Taiwan. Field data were collected from 2012 to 2022 using electrofishing and environmental measurements to construct a habitat suitability index (HSI). Information on non-native fish species was incorporated to estimate competition pressure, which was calculated by combining habitat overlap (Pianka’s index) with the relative biomass of competing species.
Results showed that environmental factors—such as flow velocity, depth, conductivity, salinity, and dissolved oxygen—had a strong influence on the abundance of P. semifasciolatus, while competition from other species also played an important role. Among all models tested, Model D, which combined HSI and competition pressure with competitor adaptability, had the highest explanatory power for current habitat conditions. In contrast, Model N, the unadjusted HSI, performed better in predicting future population trends, indicating that even without additional variables, a basic HSI can maintain strong predictive ability. The findings also suggest that biomass alone may not fully capture the competitive influence of other species, as some small or less visible species may exert strong effects through behavior or habitat use. Future improvements could include integrating functional traits or ecological roles to refine competition assessments. This study demonstrates the value of combining habitat suitability models with interspecific interaction data, providing insights for conservation planning and highlighting the complex pressures faced by native fish from both environmental changes and invasive species.
Ahmadi‐Nedushan, B., St‐Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N., & Bobée, B. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications, 22 (5), 503-523. (2006).
Bhattacharyya, B. C. On an aspect of Pearsonian system of curves and a few analogies. Sankhyā: The Indian Journal of Statistics, 415-418. (1943).
Bowen, Z. H., & Freeman, M. C. Sampling effort and estimates of species richness based on prepositioned area electrofisher samples. North American Journal of Fisheries Management, 18(1), 144-153. (1998).
Branigan, P. R., Quist, M. C., Shepard, B. B., & Ireland, S. C. Comparison of a prepositioned areal electrofishing device and fixed underwater videography for sampling riverine fishes. Western North American Naturalist, 78(1), 65-75.(2018).
Brooks, R. P. Improving habitat suitability index models. Wildlife Society Bulletin, 163-167. (1997).
Brown, S. K., Buja, K. R., Jury, S. H., Monaco, M. E., & Banner, A. Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management, 20(2), 408- 435. (2000).
Burgman, M. A., Breininger, D. R., Duncan, B. W., & Ferson, S. Setting reliability bounds on habitat suitability indices. Ecological Applications, 11(1), 70-78. (2001).
Bernery, C., Bellard, C., Courchamp, F., Brosse, S., Gozlan, R. E., Jarić, I., Teletchea, F., & Leroy, B. Freshwater fish invasions: A comprehensive review. Annual Review of Ecology, Evolution, and Systematics, 53(1), 427-456. (2022).
Chang, C.-H., Shao, Y.-T., & Kao, H.-W. Molecular identification of two sibling species of Puntius in Taiwan. Zoological Studies, 45(2), 149. (2006).
Chou, W.-C., & Chuang, M.-D. Habitat evaluation using suitability index and habitat type diversity: A case study involving a shallow forest stream in central Taiwan. Environmental Monitoring and Assessment, 172, 689-704. (2011).
Cogerino, L., Cellot, B., & Bournaud, M. Microhabitat diversity and associated macroinvertebrates in aquatic banks of a large European river. Hydrobiologia, 304, 103-115. (1995).
Dunn, O. J. Multiple comparisons using rank sums. Technometrics, 6(3), 241-252. (1964).
Favrot, S. D., & Kwak, T. J. Efficiency of two-way weirs and prepositioned electrofishing for sampling potamodromous fish migrations. North American Journal of Fisheries Management, 36(1), 167-182. (2016).
Fielding, A. H., & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. (1997).
Fisher, W. L., & Brown, M. E. A prepositioned areal electrofishing apparatus for sampling stream habitats. North American Journal of Fisheries Management, 13 (4), 807-816. (1993).
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22(1), 151- 163. (2016).
Grossman, G. D., & Freeman, M. C. Microhabitat use in a stream fish assemblage. Journal of Zoology, 212(1), 151-176. (1987).
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. Aquatic invasive species: Challenges for the future. Hydrobiologia, 750, 147-170.(2015).
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling,199(2), 142-152. (2006).
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. Applied logistic regression (3rd ed.). Hoboken, NJ: Wiley. (2013).
Inglis, G. J., Hurren, H., Oldman, J., & Haskew, R. Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecological Applications, 16(4), 1377-1390. (2006).
Jeng, H.-W. On small samples and the use of robust estimators in loss reserving. In Casualty Actuarial Society E-Forum, Fall 2010. (2010).
Kruskal, W. H., & Wallis, W. A. Use of ranks in one criterion variance analysis. Journal of the American Statistical Association, 47, 583-621. (1952).
Kiruba-Sankar, R., Raj, J. P., Saravanan, K., Kumar, K. L., Angel, J. R. J., Velmurugan, A., & Roy, S. D. Invasive species in freshwater ecosystems–threats to ecosystem services. In Biodiversity and climate change adaptation in tropical islands (pp. 257-296). Academic Press. (2018).
Lin, Y.-P., Lin, W.-C., & Wu, W.-Y. Uncertainty in various habitat suitability models and its impact on habitat suitability estimates for fish. Water, 7(8), 4088- 4107. (2015).
Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshwater Biology, 41(2), 373-391. (1999).
Manlick, P. J., Woodford, J. E., Zuckerberg, B., & Pauli, J. N. Niche compression intensifies competition between reintroduced American martens (Martes americana) and fishers (Pekania pennanti). Journal of Mammalogy, 98 (3), 690-702. (2017).
Mazzoni, R., Costa da Silva, R., & Plaza Pinto, M. Invasion & colonisation of a tropical stream by an exotic loricariid fish: Indices of gradual displacement of the native common pleco (Hypostomus punctatus) by the red fin dwarf pleco (Parotocinclus maculicauda) over fifteen years. PLoS One, 10(10), e0139968. (2015).
Nakagawa, S., & Schielzeth, H. A general and simple method for obtaining R² from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4 (2), 133-142. (2013).
Padoan, F., Calvani, G., De Cesare, G., & Perona, P. Hydraulic drive framework on habitat suitability enhances movement bias of brown trout in stream networks. Scientific Reports, 15(1), 1-10. (2025).
Peipoch, M., Brauns, M., Hauer, F. R., Weitere, M., & Valett, H. M. Ecological simplification: Human influences on riverscape complexity. BioScience, 65 (11), 1057-1065. (2015).
Pianka, E. R. The structure of lizard communities. Annual Review of Ecology and Systematics, 53-74. (1973).
Roloff, G. J., & Kernohan, B. J. Evaluating reliability of habitat suitability index models. Wildlife Society Bulletin, 973-985. (1999).
Santos, J. M., Rivaes, R., Boavida, I., & Branco, P. Structural microhabitat use by endemic cyprinids in a Mediterranean‐type river: Implications for restoration practices. Aquatic Conservation: Marine and Freshwater Ecosystems, 28(1),26-36. (2018).
Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49(4), 704-726. (1968).
Schwartz, J. S., & Herricks, E. E. Use of prepositioned areal electrofishing devices with rod electrodes in small streams. North American Journal of Fisheries Management, 24(4), 1330-1340. (2004).
Stratford, D. S., Pollino, C. A., & Brown, A. E. Modelling population responses to flow: The development of a generic fish population model. Environmental Modelling & Software, 79, 96-119. (2016).
Taniguchi-Quan, K. T., Irving, K., Stein, E. D., Poresky, A., Wildman, R. A. Jr, Aprahamian, A., Rivers, C., Sharp, G., Yarnell, S. M., & Feldman, J. R. Developing ecological flow needs in a highly altered region: Application of California Environmental Flows Framework in Southern California, USA.(2022).
Tonkin, J. D., Merritt, D. M., Olden, J. D., Reynolds, L. V., & Lytle, D. A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology & Evolution, 2(1), 86-93. (2018).
Walsh, M. G., Fenner, D. B., & Winkelman, D. L. Comparison of an electric seine and prepositioned area electrofishers for sampling stream fish communities.North American Journal of Fisheries Management, 22(1), 77-85. (2002).
Wan, X., Wang, W., Liu, J., & Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 14, 1-13. (2014).
Weddle, G. K., & Kessler, R. K. A square-metre electrofishing sampler for benthic riffle fishes. Journal of the North American Benthological Society, 12(3),291-301. (1993).
Winner, K., Noonan, M. J., Fleming, C. H., Olson, K. A., Mueller, T., Sheldon, D., & Calabrese, J. M. Statistical inference for home range overlap. Methods in Ecology and Evolution, 9(7), 1679-1691. (2018).
Wood, B. M., & Bain, M. B. Morphology and microhabitat use in stream fish. Canadian Journal of Fisheries and Aquatic Sciences, 52(7), 1487-1498. (1995).
呂映昇,物理環境因子與魚類棲地喜好度之關係-多變量分析之應用。國立成功大學水利及海洋工程學系碩論文,取自https://hdl.handle.net/11296/7mbb26,(2009)。
邱映軒,魚類群聚與環境關聯性及伏流水與地表逕流交換分析。國立成功大學水利及海洋工程學系碩士論文 ,取自https://hdl.handle.net/11296/6njkfh,(2021)。
邵廣昭,臺灣魚類資料庫網路電子版,取自 https://fishdb.sinica.edu.tw/,(2025-06-11)。
柯柏隆,淡水蝦於水生植物棲息地利用與環境因子之關係。國立成功大學水利及海洋工程學系碩士論文,取自 https://hdl.handle.net/11296/5e77m9,(2022)。
洪楷欽,利用線性及非線性模型預測淡水魚類豐度—以屏東五溝水地區為例。國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/33en24,(2023)。
陳品任,魚類群落水生植物棲地使用及地表逕流與伏流水交換的水質空間差異。國立成功大學水利及海洋工程學系碩士論文,取自https://hdl.handle.net/11296/8rmf2j,(2022)。
陳秀溶,草屯烏溪流域獅象山農場條紋二鬚鲃(Puntius semifasciolatus)之生殖生物學研究。國立中興大學生命科學院碩士在職專班論文,取自https://hdl.handle.net/11296/25b85n,(2004)。
校內:2027-07-31公開