| 研究生: |
黃健庭 Huang, Chien_Ting |
|---|---|
| 論文名稱: |
手眼追蹤作業之視覺策略與手眼協調 Visual Strategies and Eye-Hand Synergy during Oculo-Manual Tracking |
| 指導教授: |
黃英修
Hwang, Ing_shiou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 健康照護科學研究所 Institute of Allied Health Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 手眼追蹤 、運動學特徵 、視覺策略 、動作不連續性 、錯誤 、本體感覺 、知覺-動作結合 |
| 外文關鍵詞: | Visuomotor tracking, Kinematic properties, Visual strategy, Movement intermittency, Error, Proprioception, Perception-action cycle |
| 相關次數: | 點閱:178 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手眼追蹤作業可以視為一種動態的知覺—動作結合處理歷程。我們透過眼球運動擷取追蹤目標的運動學特徵以導引手部動作,而來自視覺與非視覺訊息的感覺回饋也會調控手眼的追蹤軌跡與修正行為。本研究藉由改變追蹤目標的運動特性與呈現形式,以及操弄感覺回饋訊息的可利用性,結合眼球運動訊號來探討執行追蹤作業時手眼的協調控制,特別著重於視覺策略與動作不連續性,在感覺導引與錯誤校正上反映出的手眼交互關係。
實驗一的目的是探討追蹤作業中正弦目標訊號的移動頻率與呈現形式,對複合式眼球運動以及手眼協同性的影響。受試者分別追蹤以線型運動(速度回饋)或波型運動(位置回饋)呈現的慢頻與快頻目標訊號:結果發現,相較於快頻/波型追蹤,慢頻/線型作業展現較高的手眼耦合度;快頻追蹤時,眼動軌跡與手部動作皆領先目標訊號,而慢頻追蹤時,眼球追視的時序性會因為目標訊號的呈現形式而改變。另外,慢頻追蹤比快頻追蹤引發更多的跳視反應與較大的追視增益;與波型追蹤相比,線型追蹤雖有較大的追視增益卻產生較少而短的凝視反應。慢頻追蹤作業下,眼球跳視與凝視的發生率有明顯的周期性變化:跳視較常發生於目標訊號的速度極大值處,而目標訊號位移轉折處則有較高的凝視發生率;線型追蹤作業下,眼球追視的發生率也有明顯的周期性變化,在目標訊號達到速度極大值時有最高的追視發生率。線性迴歸分析進一步顯示,與快頻或波型追蹤作業相比,複合式眼球運動行為較能夠預測慢頻或線型追蹤作業下的手部動作軌跡。
實驗二的目的是探討視覺與非視覺訊息在手部追蹤作業所扮演的相對角色與貢獻。受試者在以下三種感覺動作情境下追蹤一個以0.5赫茲頻率移動的正弦波訊號:分別是眼球單獨追蹤作業、提供手部動作表現視覺回饋的手眼共同追蹤作業、以及沒有手部動作表現視覺回饋的手眼共同追蹤作業。實驗比較不同情境下的追蹤錯誤、運動學參數、以及動作不連續性(眼球跳視與手部速度脈波)。實驗結果顯示:相較於眼球單獨追蹤,手眼共同追蹤作業產生較高的追視增益、較低的追蹤錯誤、與較少的眼動不連續性;當提供手部動作表現的即時視覺回饋訊息時,手與眼的追蹤動作軌跡有更好的一致性與較小的動作不連續性,然而手部追蹤動作的節律精確度則不受到是否提供視覺回饋訊息的影響。另外,實驗也發現,手部動作表現的視覺回饋提供與否,會顯著影響動作不連續性與追蹤錯誤的相互關係:在提供視覺回饋訊息的情境下,手部動作的速度脈波參數會受到眼球追蹤錯誤量的調控,而眼球跳視的發生與手部追蹤的位移錯誤量增減有特定的時序相關性。
總結以上,本研究發現手眼追蹤作業是與感覺迴饋形式有關的知覺—動作循環歷程,以靈活豐富的手眼協調控制與視覺搜尋策略覓隨移動中的目標物。眼球運動系統與手部動作系統在時間空間上存在彈性的耦合關係,並受到目標訊號移動頻率以及對目標訊號移動感知的調控。周邊非視覺回饋訊息對於眼球追視軌跡穩定以及手部節律性控制有關鍵性的作用,視覺回饋訊息則改善手部動作的振幅控制以及動作錯誤偵測與詮釋,進而促進手眼協調與追蹤表現。
Oculo-manual tracking is a dynamical processing of perception-action coupling. Target kinematic properties are registered with eye movements to guide manual actions, and the consequence of manual action alters ocular behaviors in return. Primary movement and secondary corrective behaviors of the ocular and manual effectors are modulated by both non-visual and visual information. The present work aimed to investigate eye-hand synergy during oculo-manual tracking under the differing sensorimotor conditions, by manipulating kinematic representations and sensory reliance/availability of target movement. Visual strategy and movement intermittency of manual and ocular effectors were of particular foci to characterize functional roles of sensory guidance, eye-hand reciprocity, and error correction for oculo-manual tracking.
In the first study, we investigated how frequency demand and motion feedback influenced composite ocular movements and eye-hand synergy during manual tracking. Subjects conducted slow and fast force-tracking in which targets were displayed in either line-mode or wave-mode of direct velocity or position nature. The results showed that slow and line-mode tracking exhibited stronger eye-hand coupling than fast and wave-mode tracking. Both eye movement and manual action led the target signal during fast-tracking, while the latency of ocular navigation during slow-tracking depended on the feedback mode. Slow-tracking resulted in more saccadic responses and larger pursuit gains than fast-tracking. Line-mode tracking led to larger pursuit gains but fewer and shorter gaze fixations than wave-mode tracking. During slow-tracking, incidences of saccade and gaze fixation fluctuated across a target cycle, peaking at velocity maximum and the maximal curvature of target displacement, respectively. For line-mode tracking, the incidence of smooth pursuit was phase-dependent, peaking at velocity maximum as well. Manual behavior of slow or line-mode tracking was better predicted by composite eye movements than that of fast or wave-mode tracking.
The second study explored the respective roles of the visual and non-visual information in manual tracking of an external target. Subjects coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. Furthermore, the visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking.
In summary, the research suggested that oculo-manual tracking was a feedback-dependent perception-action cycling underlying versatile eye-hand synergies and visual strategies in tracking a moving target. The oculomotor and manual systems demonstrated a flexible coupling in the spatiotemporal coordinate modulated by frequency demand and motion perception. Next, peripheral non-visual information is critical to stabilize pursuit characteristics and to secure rate control of rhythmic manual action. Visual information adds to eye-hand synchrony, elaborating amplitude scaling of manual action and interpretation of error properties during oculo-manual tracking.
References
1. Abbs, J. H., Gracco, V. L., & Cole, K. J. (1984). Control of multimovement coordination: sensorimotor mechanisms in speech motor programming. Journal of Motor Behavior, 16(2), 195–231.
2. Abrams, R. A., & Pratt, J. (1993). Rapid aimed limb movements: differential effects of practice on component submovements. Journal of Motor Behavior, 25(4), 288–298.
3. Appenteng, K., Prochazka, A., Proske, U., & Wand, P. (1982). Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds. Journal of Physiology, 329, 509–526.
4. Aso, K., Hanakawa, T., Aso, T., & Fukuyama, H. (2010). Cerebro-cerebellar Interactions underlying temporal information processing. Journal of Cognitive Neuroscience, 22(12), 2913–2925.
5. Ausborn, J., Stein, W., & Wolf, H. (2007). Frequency control of motor patterning by negative sensory feedback. The Journal of Neuroscience, 27(35), 9319–9328.
6. Bair, W., & Movshon, J. A. (2004). Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. Journal of Neuroscience, 24(33), 7305–7323.
7. Baloh, R. W., Yee, R. D., Honrubia, V., & Jacobson, K. (1988). A comparison of the dynamics of horizontal and vertical smooth pursuit in normal human subjects. Aviation, Space, and Environmental Medicine, 59(2), 121–124.
8. Balslev, D., Cole, J., & Miall, R. C. (2007). Proprioception contributes to the sense of agency during visual observation of hand movements: evidence from temporal judgments of action. Journal of Cognitive Neuroscience, 19(9), 1535–1541.
9. Barnes, G. R. (2008). Cognitive processes involved in smooth pursuit eye movements. Brain and Cognition, 68(3), 309–326.
10. Barnes, G. R., & Asselman, P. T. (1992). Pursuit of intermittently illuminated moving targets in the human. Journal of Physiology, 445, 617–637.
11. Barnes, G. R., & Ruddock, C. J. (1989). Factors affecting the predictability of pseudo-random motion stimuli in the pursuit reflex of man. Journal of Physiology, 408, 137–165.
12. Barton JJ, Sharpe JA, & Raymond JE. (1996). Directional defects in pursuit and motion perception in humans with unilateral cerebral lesions. Brain, 119(Pt 5), 1535–1550.
13. Basso, M. A., Krauzlis, R. J., & Wurtz, R. H. (2000). Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys. Journal of Neurophysiology, 84(2), 892–908.
14. Bastian, A. J. (2006). Learning to predict the future: the cerebellum adapts feed-forward movement control. Current Opinion in Neurobiology, 16(6), 645–649.
15. Bekkering, H., & Sailer, U. (2002). Commentary: coordination of eye and hand in time and space. Progression in Brain Research,140, 365–373.
16. Bergeron, A., & Guitton, D. (2002). In multiple-step gaze shifts: omnipause (OPNs) and collicular fixation neurons encode gaze positional error; OPNs gate saccades. Journal of Neurophysiology, 88(4), 1726–1742.
17. Boisseau, E., Scherzer, P., & Cohen, H. (2002). Eye-hand coordination in aging and in Parkinson’s disease. Aging Neuropsychology and Cognition, 9(4), 266–275.
18. Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594–2606.
19. Chukoskie, L., & Movshon, J. A. (2009). Modulation of visual signals in macaque MT and MST neurons during pursuit eye movement. Journal of Neurophysiology, 102(6), 3225–3233.
20. Clamann, H. P. (1993). Motor unit recruitment and the gradation of muscle force. Physical Therapy, 73(12), 830–843.
21. Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. The Journal of Neuroscience, 21(16), 6283–6291.
22. Collewijn, H., & Tamminga, E. P. (1984). Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. Journal of Physiology, 351, 217–250.
23. Crawford, J. D., Medendorp, W. P., & Marotta, J. J. (2004). Spatial transformations for eye-hand coordination. Journal of Neurophysiology, 92(1), 10–19.
24. Crawford, J. D., Henriques, D. Y., Medendorp, W. P., & Khan, A. Z. (2003). Ocular kinematics and eye-hand coordination. Strabismus, 11(1), 33-47.
25. de Brouwer, S., Yuksel, D., Blohm, G., Missal, M., & Lefèvre, P. (2002). What triggers catch-up saccades during visual tracking? Journal of Neurophysiology, 87(3), 1646–1650.
26. de Brouwer, S., Missal, M., Barnes, G., & Lefèvre, P. (2002). Quantitative analysis of catch-up saccades during sustained pursuit. Journal of Neurophysiology, 87(4), 1772–1780.
27. de Bie, J., & van den Brink, G. (1986). A model for the slow control system during monocular fixation. Vision Research, 26(7), 1129–1142.
28. Eckmiller, R. (1987). Neural control of pursuit eye movements. Physiological Reviews, 67(3), 797–857.
29. Engel, K. C., & Soechting, J. F. (2003). Interactions between ocular motor and manual responses during two-dimensional tracking. Progress in Brain Research, 142, 141–153.
30. Engel, K. C., Anderson, J. H., & Soechting, J. F. (2000). Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. Journal of Neurophysiology, 84(3), 1149–1156.
31. Fried, P. J., Elkin-Frankston, S., Rushmore, R. J., Hilgetag, C. C., & Valero-Cabre, A. (2011). Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex. PLoS One, 6(11), e27204.
32. Fukushima, K., Yamanobe, T., Shinmei, Y., & Fukushima, J. (2002). Predictive responses of periarcuate pursuit neurons to visual target motion. Experimental Brain Research, 145(1), 104–120.
33. Gauthier, G. M., & Mussa Ivaldi, F. (1988). Oculo-manual tracking of visual targets in monkey: role of the arm afferent information in the control of arm and eye movements. Experimental Brain Research, 73(1), 138–154.
34. Gauthier, G. M., Vercher, J. L., MussaIvaldi, F., & Marchetti, E. (1988). Oculo-manual tracking of visual targets: control learning, coordination control and coordination model. Experimental Brain Research, 73(1), 127–137.
35. Gowen, E., & Miall, R. C. (2006). Eye-hand interactions in tracing and drawing tasks. Human Movement Science, 25(4–5), 568–585.
36. Gravetter, F. J., & Vallnau, L. B. (2010). Essentials of statistics for the behavioral sciences (7th ed.). Belmont, CA: Wadsworth, (Chapter 14).
37. Gritsenko, V., Yakovenko, S., & Kalaska, J. F. (2009). Integration of predictive feedforward and sensory feedback signals for online control of visually guided movement. Journal of Neurophysiology, 102(2), 914–930.
38. Grossberg, S., Srihasam, K., & Bullock, D. (2012). Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets. Neural Networks, 27, 1–20.
39. Guan, J., & Wade, M. G. (2000). The effect of aging on adaptive eye-hand coordination. Journal of Gerontology. Series B, Psychological Sciences and Social Sciences, 55(3), P151–P162.
40. Hafed, Z. M., Goffart, L., & Krauzlis, R. J. (2008). Superior colliculus inactivation causes stable offsets in eye position during tracking. The Journal of Neuroscience, 28(32), 8124–8137.
41. Hill, H., & Raab, M. (2005). Analyzing a complex tracking task with brain-electrical event related potentials. Human Movement Sciences, 24(1), 1–30.
42. Hocherman, S., & Levy, H. (2000). The role of feedback in manual tracking of visual targets. Perceptual and Motor Skills, 90(3 Pt 2), 1235–1248.
43. Ilg UJ. (2008). The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit. Vision Research, 48(20), 2062-2069.
44. Inoue, K., Kawashima, R., Satoh, K., Kinomura, S., Goto, R., et al. (1998). PET study of pointing with visual feedback of moving hands. Journal of Neurophysiology, 79(1), 117–125.
45. Jenkins, I. H., Passingham, R. E., & Brooks, D. J. (1997). The effect of movement frequency on cerebral activation: a positron emission tomography study. Journal of the Neurological Sciences, 151(2), 195–205.
46. Jones, K. E., Hamilton, A. F., & Wolpert, D. M. (2002). Sources of signal dependent noise during isometric force production. Journal of Neurophysiology, 88(3), 1533–1544.
47. Keller, E., & Johnsen, S. D. (1990). Velocity prediction in corrective saccades during smooth-pursuit eye movements in monkey. Experimental Brain Research, 80(3), 525–531.
48. Keller, E. L., Gandhi, N. J., & Weir, P. T. (1996). Discharge of superior collicular neurons during saccades made to moving targets. Journal of Neurophysiology, 76(5), 3573–3577.
49. Ketcham, C. J., Dounskaia, N. V., & Stelmach, G. E. (2006). The role of vision in the control of continuous multijoint movements. Journal of Motor Behavior, 38(1), 29–44.
50. Khan, M. A., & Franks, I. M. (2000). The effect of practice on component submovements is dependent on the availability of visual feedback. Journal of Motor Behavior, 32(3), 227–240.
51. Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E., & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179(2), 291–299.
52. Koken, P. W., & Erkelens, C. J. (1992). Influences of hand movements on eye movements in tracking tasks in man. Experimental Brain Research, 88(3), 657–664.
53. Komatsu, H., & Wurtz, R. H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology, 60(2), 621–644.
54. Krauzlis, R. J. (2005). The control of voluntary eye movements: new perspectives. The Neuroscientist, 11(2), 124–137.
55. Krauzlis, R. J. (2004). Recasting the smooth pursuit eye movement system. Journal of Neurophysiology, 91(2), 591–603.
56. Krauzlis, R. J. (2000). Population coding of movement dynamics by cerebellar Purkinje cells. Neuroreport, 11(5), 1045–1050.
57. Krauzlis, R. J., & Lisberger, S. G. (1994). A model of visually-guided smooth pursuit eye movements based on behavioral observations. Journal of Computational Neuroscience, 1(4), 265–283.
58. Krigolson, O. E., & Holroyd, C. B. (2006). Evidence for hierarchical error processing in the human brain. Neuroscience, 137(1), 13–17.
59. Land, M. F., & Lee, D. N. (1994). Where we look when we steer. Nature, 369(6483), 742–744.
60. Laurutis, V., Daunys, G., & Zemblys, R. (2010). Quantitative Analysis of Catch-up Saccades Executed during Two-dimensional Smooth Pursuit. Electronics & Electrical Engineering, 98, 83–86.
61. Lazzari, S., Vercher, J. L., & Buizza, A. (1997). Manuo-ocular coordination in target tracking. I. A model simulating human performance. Biological Cybernetics, 77(4), 257–266.
62. Lefèvre, P., Quaia, C., & Optican, L. M. (1998). Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks,11(7-8), 1175–1190.
63. Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements (4th ed.). UK: Oxford University Press.
64. Lencer, R., & Trillenberg, P. (2008). Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain and Cognition, 68(3), 219–228.
65. Levy-Tzedek, S., Ben Tov, M., & Karniel, A. (2011). Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. Journal of Neurophysiology, 106(5), 2120–2126.
66. MacDonald, P. A., & Paus, T. (2003). The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study. Cerebral Cortex, 13(9), 962–967.
67. Maioli, C., Falciati, L., & Gianesini, T. (2007). Pursuit eye movements involve a covert motor plan for manual tracking. Journal of Neuroscience, 27(27), 7168–7173.
68. Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229–240.
69. Mascaro, M., Battaglia-Mayer, A., Nasi, L., Amit, D. J., & Caminiti, R. (2003). The eye and the hand: neural mechanisms and network models for oculomanual coordination in parietal cortex. Cerebral Cortex, 13(12), 1276–1286.
70. Mather, J. A., & Lackner, J. R. (1981). The influence of efferent, proprioceptive, and timing factors on the accuracy of eye-hand tracking. Experimental Brain Research, 43(3-4), 406–412.
71. Maunsell, J. H., & Van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49(5), 1127–1147.
72. McAuley, J. H., Farmer, S. F., Rothwell, J. C., & Marsden, C. D. (1999). Common 3 and 10 Hz oscillations modulate human eye and finger movements while they simultaneously track a visual target. Journal of Physiology, 515(Pt 3), 905–917.
73. McGibbon, C. A., Palmer, T., Goldvasser, D., & Krebs, D. E. (2001). Kalman filter detection of blinks in video-oculography: applications for VVOR measurement during locomotion. Journal of Neuroscience Methods, 106(2), 171–178.
74. Mennie, N., Hayhoe, M., & Sullivan, B. (2007). Look-ahead fixations: anticipatory eye movements in natural tasks. Experimental Brain Research, 179(3), 427–442.
75. Miall, R. C., & Reckess, G. Z. (2002). The cerebellum and the timing of coordinated eye and hand tracking. Brain and Cognition, 48(1), 212–226.
76. Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4(6), 638–644.
77. Miall, R. C., Imamizu, H., & Miyauchi, S. (2000). Activation of the cerebellum in co-ordinated eye and hand tracking movements: an fMRI study. Experimental Brain Research, 135(1), 22–33.
78. Miall, R. C. (1996). Task-dependent changes in visual feedback control: a frequency analysis of human manual tracking. Journal of Motor Behavior, 28(2), 125–135.
79. Miall, R. C., Weir, D. J., & Stein, J. F. (1993). Intermittency in human manual tracking tasks. Journal of Motor Behavior, 25(1), 53–63.
80. Miall, R. C., Weir, D. J., & Stein, J. F. (1988). Planning of movement parameters in a visuo-motor tracking task. Behavioural Brain Research, 27(1), 1–8.
81. Miall, R. C., Weir, D. J., & Stein, J. F. (1986). Manual tracking of visual targets by trained monkeys. Behavioural Brain Research, 20(2), 185–201.
82. Milner, T. E. (1992). A model for the generation of movements requiring endpoint precision. Neuroscience, 49(2), 487–496.
83. Moschner, C., & Baloh, R. W. (1994). Age-related changes in visual tracking. Journal of Gerontology, 49(5), M235-M238.
84. Mustari, M. J., Ono, S., & Das, V. E. (2009). Signal processing and distribution in cortical-brainstem pathways for smooth pursuit eye movements. Annals of the New York Academy of Sciences, 1164, 147–154.
85. Navas, F., & Stark, L. (1968). Sampling or intermittency in hand control system dynamics. Biophysical Journal, 8(2), 252–302.
86. Neilson, P. D., Neilson, M. D., & O'Dwyer, N. J. (1988). Internal models and intermittency: a theoretical account of human tracking behavior. Biological Cybernetics, 58(2), 101–112.
87. Newsome, W. T., Wurtz, R. H., Du¨rsteler, M. R., & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. The Journal of Neuroscience, 5(3), 825–840.
88. Nitschke, M. F., Arp, T., Stavrou, G., Erdmann, C., & Heide, W. (2005). The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements--an fMRI study. Progress in Brain Research, 148, 151–164.
89. Obhi, S. S., Planetta, P. J., & Scantlebury, J. (2009). On the signals underlying conscious awareness of action. Cognition, 110(1), 65–73.
90. Ono, S., Das, V. E., Economides, J. R., & Mustari, M. J. (2005). Modeling of smooth pursuit-related neuronal responses in the DLPN and NRTP of the rhesus macaque. Journal of Neurophysiology, 93(1), 108–116.
91. Orban de Xivry, J. J., & Lefèvre, P. (2007). Saccades and pursuit: two outcomes of a single sensorimotor process. Journal of Physiology, 584(Pt 1), 11–23.
92. Paillard, J. (1996). Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Canadian Journal of Physiology and Pharmacology, 74(4), 401–417.
93. Paninski, L., Fellows, M. R., Hatsopoulos, N. G., & Donoghue, J. P. (2004). Spatiotemporal tuning of motor cortical neurons for hand position and velocity. Journal of Neurophysiology, 91(1), 515–532.
94. Park, S., Toole, T., & Lee, S. (1999). Functional roles of the proprioceptive system in the control of goal-directed movement. Perceptual and Motor Skills, 88(2), 631–647.
95. Pasalar, S., Roitman, A. V., & Ebner, T. J. (2005). Effects of speeds and force fields on submovements during circular manual tracking in humans. Experimental Brain Research, 163(2), 214–225.
96. Pew, R. W. (1974). Human perceptual-motor performance. In B. H. Kantowitz (Eds.), Human information processing: tutorials in performance and cognition (pp. 1–39). New York: Lawrence Erlbaum Associates.
97. Pola, J., & Wyatt, H. J. (2001). The role of target position in smooth pursuit deceleration and termination. Vision Research, 41(5), 655–669.
98. Poston, B., Van Gemmert, A. W., Barduson, B., & Stelmach, G. E. (2009). Movement structure in young and elderly adults during goal-directed movements of the left and right arm. Brain and Cognition, 69(1), 30–38.
99. Prsa, M., Dash, S., Catz, N., Dicke, P. W., & Their, P. (2009). Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. The Journal of Neuroscience, 29(1), 250–262.
100. Rand, M. K., & Stelmach, G. E. (2011). Effects of hand termination and accuracy requirements on eye-hand coordination in older adults. Behavioural Brain Research, 219(1), 39–46.
101. Reina, G. A., & Schwartz, A. B. (2003). Eye-finger coupling during closed-loop drawing: evidence of shared motor planning? Human Movement Science, 22(2), 137–152.
102. Robinson, D. A., Gordon, J. L., & Gordon, S. E. (1986). A model of the smooth pursuit eye movement system. Biological Cybernetics, 55(1), 43–57.
103. Roerdink, M., Ophoff, E. D., Lieke, E., Peper, C., & Beek, P. J. (2008). Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking. Experimental Brain Research, 184(2), 143–156.
104. Roerdink, M., Peper, C. E., & Beek, P. J. (2005). Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: tracking performance and visual search behavior. Human Movement Science, 24(3), 379–402.
105. Roitman, A. V., Pasalar, S., Johnson, M. T., & Ebner, T. J. (2005). Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. Journal of Neuroscience, 25(40), 9244–9257.
106. Roitman, A. V., Massaquoi, S. G., Takahashi, K., & Ebner, T. J. (2004). Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task. Journal of Neurophysiology, 91(2), 901–911.
107. Romero, D. H., Van Gemmert, A. W., Adler, C. H., Bekkering, H., & Stelmach, G. E. (2003). Time delays prior to movement alter the drawing kinematics of elderly adults. Human Movement Science, 22(2), 207–220.
108. Rottach, K. G., Zivotofsky, A. Z., Das, V. E., Averbuch-Heller, L., Discenna, A. O., et al. (1996). Comparison of horizontal, vertical and diagonal smooth pursuit eye movements in normal human subjects. Vision Research, 36(14), 2189–2195.
109. Sailer, U., Eggert, T., & Straube, A. (2005). Impaired temporal prediction and eye-hand coordination in patients with cerebellar lesions. Behavioural Brain Research, 160(1), 72–87.
110. Sailer, U., Flanagan, J. R., & Johansson, R. S. (2005). Eye-finger coordination during learning of a novel visuomotor task. Journal of Neuroscience, 25(39), 8833–8842.
111. Saunders, J. A., & Knill, D. C. (2005). Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Experimental Brain Research, 162(4), 458–473.
112. Scarchilli, K., & Vercher, J. L. (1999). The oculomanual coordination control center takes into account the mechanical properties of the arm. Experimental Brain Reserch, 124(1), 42–52.
113. Schwarz, U., & Ilg, U. J. (1999). Asymmetry in visual motion processing. Neuroreport, 10(12), 2477–2480.
114. Selen, L. P., van Dieën, J. H., & Beek, P. J. (2006). Impedance modulation and feedback corrections in tracking targets of variable size and frequency. Journal of Neurophysiology, 96(5), 2750–2759.
115. Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89–108.
116. Slifkin, A. B., & Newell, K. M. (2000). Variability and noise in continuous force production. Journal of Motor Behavior, 32(2), 141–150.
117. Sober, S. J., & Sabes, P. N. (2005). Flexible strategies for sensory integration during motor planning. Nature Neuroscience, 8(4), 490–497.
118. Souto, D., & Kerzel, D. (2008). Dynamics of attention during the initiation of smooth pursuit eye movements. Journal of Vision, 8(14), 3.1–16.
119. Spapé MM, & Serrien DJ. (2010). Interregional synchrony of visuomotor tracking: perturbation effects and individual differences. Behavioural Brain Research, 213(2), 313–318.
120. Squatrito, S., & Maioli, M. G. (1997). Encoding of smooth pursuit direction and eye position by neurons of area MSTd of macaque monkey. Journal of Neuroscience, 17(10), 3847–3860.
121. Stein, J. F., & Glickstein, M. (1992). Role of the cerebellum in visual guidance of movement. Physiological Reviews, 72(4), 967–1017.
122. Stuphorn, V., Bauswein, E., & Hoffmann, K. P. (2000). Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. Journal of Neurophysiology, 83(3), 1283–1299.
123. Swinnen, S., Massion, J., Heuer, H., & Casaer, P. (1994). Interlimb coordination: neural, dynamical, and cognitive constraints (1st ed.). Orlando, FL: Academic Press.
124. Tansey, K. E., & Botterman, B. R. (1996). Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. I. Motor-unit recruitment. Journal of Neurophysiology, 75(1), 26–37.
125. Tarnutzer, A. A., Ramat, S., Straumann, D., & Zee, D. S. (2007). Pursuit responses to target steps during ongoing tracking. Journal of Neurophysiology, 97(2), 1266–1279.
126. Terrier, R., Forestier, N., Berrigan, F., Germain-Robitaille, M., Lavallière, M., & Teasdale, N. (2011). Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings. Journal of Neuroengineering and Rehabilitation, 8, 10.
127. Thura, D., Hadj-Bouziane, F., Meunier, M., & Boussaoud, D. (2008). Hand position modulates saccadic activity in the frontal eye field. Behavioural Brain Research, 186(1), 148–153.
128. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.
129. Turner, R. S., Grafton, S. T., Votaw, J. R., Delong, M. R., & Hoffman, J. M. (1998). Motor subcircuits mediating the control of movement velocity: a PET study. Journal of Neurophysiology, 80(4), 2162–2176.
130. Vallbo, A. B., & Wessberg, J. (1993). Organization of motor output in slow finger movements in man. Journal of Physiology, 469, 673–691.
131. Van Donkelaar, P., & Drew, A. S. (2002). The allocation of attention during smooth pursuit eye movements. Progress in Brain Research, 140, 267–277.
132. Van Gelder, P., Anderson, S., Herman, E., Lebedev, S., & Tsui, W. H. (1990). Saccades in pursuit eye tracking reflect motor attention processes. Comprehensive Psychiatry, 31(3), 253–260.
133. Vercher, J. L., Sarès, F., Blouin, J., Bourdin, C., & Gauthier, G. (2003). Role of sensory information in updating internal models of the effector during arm tracking. Progress in Brain Research, 142, 203–222.
134. Vercher, J. L., Lazzari, S., & Gauthier, G. (1997). Manuo-ocular coordination in target tracking. II. Comparing the model with human behavior. Biological Cybernetics, 77(4), 267–275.
135. Vercher, J. L., Gauthier, G. M., Guédon, O., Blouin, J., Cole, J., & Lamarre, Y. (1996). Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination. Journal of Neurophysiology, 76(2), 1133–1144.
136. Vercher, J. L., Quaccia, D., & Gauthier, G. M. (1995). Oculo-manual coordination control: respective role of visual and non-visual information in ocular tracking of self-moved targets. Experimental Brain Research, 103(2), 311–322.
137. Vercher, J. L., & Gauthier, G. M. (1992). Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Experimental Brain Research, 90(3), 599–609.
138. Vercher, J. L., & Gauthier, G. M. (1988). Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion. Experimental Brain Research, 73(1), 155–166.
139. Vickers, J. N. (2007). Perception, cognition, and decision training: the quiet eye in action (1st ed.). Champaign, IL: Human Kinetics.
140. Vidoni, E. D., McCarley, J. S., Edwards, J. D., & Boyd, L. A. (2009) Manual and oculomotor performance develop contemporaneously but independently during continuous tracking. Experimental Brain Research, 195(4), 611–620.
141. Vieluf, S., Godde, B., Reuter, E. M., & Voelcker-Rehage, C. (2013). Age-related differences in finger force control are characterized by reduced force production. Experimental Brain Research, 224(1), 107-117.
142. Wang, W., Chan, S. S., Heldman, D. A., & Moran, D. W. (2007). Motor cortical representation of position and velocity during reaching. Journal of Neurophysiology, 97(6), 4258–4270.
143. Wardak, C., Olivier, E., & Duhamel, J. R. (2011). The relationship between spatial attention and saccades in the frontoparietal network of the monkey. European Journal of Neuroscience, 33(11), 1973–1981.
144. Wisleder, D., & Dounskaia, N. (2007). The role of different submovement types during pointing to a target. Experimental Brain Research, 176(1), 132–149.
145. Wurtz, R. H., & Optican, L. M. (1994). Superior colliculus cell types and models of saccade generation. Current Opinion in Neurobiology, 4(6), 857–861.
146. Wyatt, H. J., & Pola, J. (1983). Smooth pursuit eye movements under open-loop and closed-loop conditions. Vision Research, 23(10), 1121–1131.
147. Xia, R., & Barnes, G. (1999). Oculomanual Coordination in Tracking of Pseudorandom Target Motion Stimuli. Journal of Motor Behavior, 31(1), 21–38.
148. Yasui, S., & Young, L. R. (1975). Perceived visual motion as effective stimulus to pursuit eye movement system. Science, 190(4217), 906–908.
149. Yoshitake, Y., Shinohara, M., Kouzaki, M., & Fukunaga, T. (2004). Fluctuations in plantar flexion force are reduced after prolonged tendon vibration. Journal of Applied Physiology, 97(6), 2090–2097.